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Abstract
The Structure of Models of Second-order Set Theories

by
Kameryn J Williams

Advisor: Professor Joel David Hamkins

This dissertation is a contribution to the project of second-order set theory, which has seen a revival in
recent years. The approach is to understand second-order set theory by studying the structure of models of
second-order set theories. The main results are the following, organized by chapter. First, I investigate the
poset of T -realizations of a fixed countable model of ZFC, where T is a reasonable second-order set theory
such as GBC or KM, showing that it has a rich structure. In particular, every countable partial order embeds
into this structure. Moreover, we can arrange so that these embedding preserve the existence/nonexistence
of upper bounds, at least for finite partial orders. Second I generalize some constructions of Marek and
Mostowski from KM to weaker theories. They showed that every model of KM plus the Class Collection
schema “unrolls” to a model of ZFC− with a largest cardinal. I calculate the theories of the unrolling for
a variety of second-order set theories, going as weak as GBC + ETR. I also show that being T -realizable
goes down to submodels for a broad selection of second-order set theories T . Third, I show that there is a
hierarchy of transfinite recursion principles ranging in strength from GBC to KM. This hierarchy is ordered
first by the complexity of the properties allowed in the recursions and second by the allowed heights of the
recursions. Fourth, I investigate the question of which second-order set theories have least models. I show
that strong theories—such as KM or Π1

1-CA—do not have least transitive models while weaker theories—from
GBC to GBC + ETROrd—do have least transitive models.
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Chapter 0

Introduction

Eine Vielheit kann nämlich so beschaffen sein,
daß die Annahme eines “Zusammenseins”
aller iherer Elemente auf einen Widerspruch
führt, so daß es unmöglich ist, die Vielheit als
eine Einheit, als “ein fertiges Ding”
aufzufassen. Solche Vielheiten nenne ich
absolut unendliche oder inconsistente
Vielheiten.

Georg Cantor

The distinction between set and class can be traced back to Cantor. He distinguished sets from those
multiplicities he termed absolutely infinite or inconsistent. As the name suggests, inconsistent multiplicities
are those which lead to contradiction if taken as a set. For example, if we assume that the collection of
ordinals is a set then we can derive the Burali–Forti paradox.

From a more modern perspective based upon the iterative conception of set we have a clear distinction
between sets and classes. A collection is a set if it appears at some stage α in the cumulative hierarchy, while
a (proper) class consists of elements unbounded in rank. So sets can be elements of other collections, while
classes can never be elements.

In ordinary set theoretic practice in the early twenty-first century classes are treated as mere syntactic
sugar; for example, x ∈ Ord is an abbreviation for the formula expressing that x is a transitive set linearly
ordered by ∈. But set theory can also be formalized with classes as actual objects, rather than relegating
them to a metatheoretic role.

The first axiomatization of second-order set theory—set theory with both sets and classes, sometimes
called class theory—is due to von Neumann [Neu25]. His system survives into the modern day as GBC,
allowing only predicative definitions of classes.1 But GBC is not the only well-studied axiomatization of
second-order set theory. The other major axiomatization KM, which allows impredicative comprehension,
was independently proposed by multiple logicians—among them Morse, Quine, and Tarski. See the appendix
to [Kel75] for a popularization of this system.

In the decades following von Neumann’s axiomatization, second-order axiomatizations of set theory saw
significant use among set theorists. Perhaps most notably, Gödel’s original presentation [Göd38] of his
relative consistency proof for the axiom of choice was in terms of von Neumann’s system. But over time the
use of second-order systems waned, with the first-order system ZFC becoming the de facto standard.

1But note that the contemporary GBC is quite different from von Neumann’s original axiomatization. Most strikingly,
von Neumann’s system did not use sets and classes but rather what he termed I-objects and II-objects. I-objects are the sets
whereas II-objects are not classes but rather functions (possibly class-sized), with I-II-objects being the set-sized functions. The
modern formulation in terms of sets and classes, originally due to Bernays, is much more convenient to work with.

1



CHAPTER 0. INTRODUCTION 2

In recent years, however, second-order set theory has enjoyed a revived interest. Several mathematicians
independently arrived at second-order set theory as the natural arena in which to pursue certain projects.
It has seen use in work on the foundations of class forcing [Ant15; HKLNS16; HKSb; HKSa; GHHSW17],
hyperclass forcing [AF], formalizing the inner model hypothesis [ABF], determinacy for class games [GH17;
Hac16], and in truth theoretic work [Fuj12].

One fact that has emerged is that GBC and KM are not the only interesting second-order set theories.
For some applications, KM is not quite strong enough so we need to extend to a stronger system. And for
other applications GBC is too weak while KM is overkill, so we want to study natural intermediate theories.

This dissertation is a contribution towards this project of second-order set theory. Rather than apply the
tools of second-order set theory to some domain, the aim is to study second-order set theories themselves.
My approach will be model theoretic, aiming to understand these theories by understanding their models.
A better knowledge of the foundations of second-order set theory will then facilitate applications thereof.

The layout of this dissertation is as follows.
Chapter 1 begins with the main theories we will consider, as well as several important classes of models.

This is followed by a discussion of how to check whether a collection of classes gives a model of such and
such theory, and when the axioms are preserved by forcing. To conclude the chapter, I show that the partial
order consisting of GBC-realizations of a fixed countable model of ZFC has a rich structure. Much of the
material is this chapter is already known, but I include it for the sake of giving a complete presentation.

Chapter 2 is dedicated to three constructions, which were originally studied in the context of models of
KM by Marek and Mostowski [Mar73; MM75]. The first of these constructions, which I call the unrolling
construction, takes a model of KM (plus Class Collection) and gives a model of ZFC− with a largest cardinal,
which is inaccessible. The second construction, I call it the cutting-off construction, takes a model of ZFC−

with a largest cardinal and gives a model of second-order set theory. Together, these two constructions show
that KM (plus Class Collection) is bi-interpretable with a first-order set theory without powerset. The third
construction is a version of Gödel’s constructible universe in the classes. Given a model of KM this gives a
smaller model of KM plus Class Collection with the same ordinals.

I investigate these constructions over a weaker base theory than KM (plus Class Collection), generalizing
Marek and Mostowski’s results to weaker theories. In particular, this shows that for the second-order set
theories T in which we are interested that being T -realizable is closed under taking inner models. I close
the chapter with an application of the constructions, showing that the least height of a transitive model of
GBC + Π1

k-CA is less than the least height of a β-model of GBC + Π1
k-CA. This generalizes an analogous

result—due to Marek and Mostowski, as the reader may have guessed—about transitive and β-models of
KM.

Chapter 3 is about transfinite recursion principles in second-order set theory. The main result is that
there is a hierarchy of theories, ranging in strength from GBC to KM, given by transfinite recursion principles.
This hierarchy is ordered first by the complexity of the properties we can do recursion for and second by the
lengths of recursion that can be done.

Chapter 4 investigates the phenomenon of minimal models of second-order set theories. The main result is
that strong second-order set theories—e.g. KM or GBC+Π1

1-CA—do not have least transitive models whereas
weaker second-order set theories—e.g. GBC or GBC+ETROrd—do. Indeed, the results of that chapter show
that no countable model of ZFC can have a least KM-realization (and similarly for other strong theories).
Left open is the question of whether GBC+ ETR has a least transitive model. I show that there is a basis of
minimal (GBC+ETR)-realizations for any (GBC+ETR)-realizable model M so that if (M,X ) |= GBC+ETR
then X sits above precisely one of these basis realizations. I also show that the second-order set theories
considered in this dissertation have least β-models.

Some of the material in this dissertation also appeared in a paper of mine [Wil17] which, at time of
writing, is under review. In particular, that paper contains most of the results of chapter 4, parts of chapter
3, and a little bit from the end of chapter 1.



Chapter 1

A first look at models of second-order
set theories

Wesentlich aber ist, da auch ”zu große”
Mengen Gegenstand dieser Mengenlehre sind,
nämlich diejenigen II. Dinge, die keine I.II.
Dinge sind. Anstatt sie gänzlich zu verbieten,
werden sie nur für unfähig erklärt Argumente
zu sein (sie sind keine I. Dinge!). Zum
Vermeiden der Antinomien reicht das aus und
ihre Existenz ist für gewisse Schluweisen
notwendig.

John von Neumann

The purpose of this chapter is to introduce the important objects of study for this dissertation and lay
out some basic properties thereof.

I begin by introducing the major second-order set theories under study, followed by some important
classes of models for those theories. Next comes a discussion of means for checking whether a structure
satisfies the axioms of these theories. In particular, I look at when these axioms are preserved by class
forcing. This transitions into some well-known constructions for producing models of weak second-order set
theories.

I end the chapter with an in-depth look at the collection of GBC-realizations for a fixed countable model
of ZFC. Some of those results can be generalized to stronger theories, and I discuss to what extent this can
be done. But a fuller look at the topic for stronger theories is delayed until chapter 4, after we have built
up more tools.

Most of the work in this chapter is not new. I have strived to indicate clearly where each theorem
originates. At times, however, I have resorted to labeling a result as folklore when its origin is lost in the
literature to me.

1.1 Dramatis Personae

In this section I present the main players in the drama. I introduce the main second-order set theories of
interest and the important classes of models of these theories. First, let me set up some framework.

The reader may know that there are two main approaches to formalizing second-order set theory. The
first is to use a one-sorted theory, where the only objects are classes and sets are those classes which are
elements of another class. I will not take that approach. Instead, I will take the two-sorted approach, where

3



CHAPTER 1. A FIRST LOOK 4

there are two types of objects: sets and classes. The domain of a model (M,X ) has two parts, where M is
the first-order part of the model, with elements of M being the sets, and X is the second-order part of the
model, with elements of X being the classes. I will suppress writing the membership relation for the model,
referring simply to (M,X ). In case we need to refer to the membership relation I will write ∈(M,X ).

In this dissertation we will often be interested in different models which have the same sets but different
classes. This easily fits to the two-sorted approach, where we can easily talk about models (M,X ) and
(M,Y) with the same first-order part. In contrast, the one-sorted approach is awkward here.

I will use L∈ to refer to the language of set theory, whether second-order or first-order. The only non-
logical symbols in the language are for membership. Extensions of this language by adding new symbols will
be denoted e.g. L∈(A).

It should be emphasized that the “second-order” in second-order set theory refers to the use of classes,
not to the logic. The theories we consider here will all be formalized in first-order logic.1 Consider the
analogous situation of second-order arithmetic, where two-sorted theories of arithmetic—with numbers and
sets of numbers as objects—are formulated in first-order logic.

In the formal language for these theories I will distinguish between variables for sets and variables for
classes by using lowercase letters for the former and uppercase letters for the latter. For instance, the formula
∀X∃y y ∈ X gives the (false) proposition that every class has some set as a member. Say that a formula in
the language of set theory is first-order if it has no class quantifiers (though classes may appear as variables).
Those formulae which do have class quantifiers are called second-order. The first-order formulae are stratified
according to the usual Lévy hierarchy, which will be denoted by Σ0

n and Π0
n. There is also a stratification of

the second-order formulae. A formula is Σ1
1 if it is of the form ∃X ϕ(X) or is Π1

1 if it is of the form ∀X ϕ(X),
where ϕ is first-order. This extends upward to Σ1

n and Π1
n in the obvious manner. It will sometimes be

convenient to have a name for the first-order and second-order formulae. I will use Σ0
ω, Π0

ω, Σ1
0, or Π1

0 for
the first-order formulae and Σ1

ω or Π1
ω for the second-order formulae.

All second-order set theories I consider will include Class Extensionality as an axiom. It will often be
convenient to assume that our models are of the form (M,X ) where X ⊆ P(M) and the set-membership
relation is the true ∈. However, one must be a little careful here. It may be that some of the elements of M
are subsets of M . If M is transitive and its membership relation is ∈ �M , then this is no problem as in this
case the set-set and set-class membership relations will cohere for any X ⊆ P(M) we choose. But it could
be that the membership relation of M is some weird thing. Nevertheless, it is always true that our models
(M̄, X̄ ) are isomorphic to a model of the form (M,X ) where X ⊆ P(M) and the set-membership relation
is the true ∈. We first find M ∼= M̄ so that M ∩ P(M) = ∅. Next, using that all our models will satisfy
Extensionality for classes, we can realize the classes of (the isomorphic copy of) our model as literal subsets
of the model.2

1.1.1 Second-order set theories

The theories can be roughly grouped into three groups: weak, strong, and medium. I will present them in
that order.

Definition 1.1. Gödel–Bernays set theory with Global Choice GBC is axiomatized with the following.3

• ZFC for sets.

• Extensionality for classes.

• Class Replacement—if F is a class function and a is a set then F ′′a is a set.

1One could also think of them as formalized in second-order logic with Henkin semantics, but officially we will use first-order
logic.

2There is a small point here which needs to be addressed. Under this approach the sets and classes are disjoint. So, for
example, if we are being really careful we must distinguish between the set of finite ordinals and the class of finite ordinals, as
they are different objects. Nevertheless, it will follow from the axioms we use that every set has the same elements as some
class. In practice I will not always be careful to distinguish a set from the class it is co-extensive with.

3In the literature one also sees this axiom system called NBG.
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• Global Choice—there is a class bijection Ord→ V .

• Elementary Comprehension—if ϕ(x) is a first-order formula, possibly with set or class parameters,
then {x : ϕ(x)} is a class.

Dropping Global Choice from the axiomatization gives the theory GBc. The c reminds one that while Global
Choice is lacking, there are still choice functions for sets. Though it will not be used in this dissertation, GB
is used to refer to ZF plus Class Extensionality, Class Replacement, and Elementary Comprehension.

This axiomatization is not parsimonious. In particular, it has infinitely many axioms whereas GBC
is known to be finitely axiomatizable. An advantage of this axiomatization is that it makes immediately
apparent the distinction between classes and sets and how GBC relates to ZFC. It is obvious from this
axiomatization that we can obtain a model of GBC by taking a model of ZFC (perhaps we require more from
the model4) and adding certain classes. Later in this chapter we will see how to verify whether a collection
of classes for a model of ZFC gives a model of GBC.

Note that by Elementary Comprehension for every set x there is a class X which has the same elements.
But not all classes are co-extensive with sets. For instance, By Elementary Comprehension there is a class
of all sets. But there can be no such set, by a well-known argument of Russell’s. A class which is not
co-extensive with a set is called a proper class.

Also note that GBc proves Separation for classes, i.e. that A ∩ b is a set for every class A and every set
b. To see this, let F be the class function which is the identity on A and sends every set not in A to some
designated element, say ∅. By Class Replacement a = F ′′b is a set. Then either a or a \ {∅} will be A ∩ b,
depending upon whether b ⊆ A and ∅ ∈ A ∩ b.

Next we look at much stronger theories. The difference in axiomatization may appear slight—allowing
impredicative definitions in Comprehension—but the effects are profound.

Definition 1.2. Kelley–Morse set theory KM is axiomatized with the axioms of GBC plus the full Com-
prehension schema. Instances of this schema assert that {x : ϕ(x)} is a set for any formula ϕ, possibly with
class quantifiers and set or class parameters.5

We can strengthen KM by adding the Class Collection schema. For some purposes, KM is not quite
enough and we need the extra strength of this schema.

Definition 1.3. The theory KMCC is obtained from KM by adding the Class Collection axiom schema.6

Informally, this schema asserts that if for every set there is a class satisfying some property, then there is
a coded hyperclass7 consisting of witnesses for each set. Formally, let ϕ(x, Y ) be a formula, possibly with
parameters. The instance of Class Collection for ϕ asserts

[∀x∃Y ϕ(x, Y )]⇒ [∃C∀x ∃y ϕ(x, (C)y)]

where (C)y = {z : (y, z) ∈ C} is the y-th slice of C.

4Though we will see later in this chapter that we do not need to require more, at least for countable models. Any countable
model of ZFC can be expanded to a model of GBC. Consequently, GBC is conservative over ZFC.

5In the literature KM has many other names—I have seen MK for Morse–Kelley (e.g. [AF]), MT for Morse–Tarski (e.g.
[Chu80]), MKT for Morse–Kelley–Tarski (e.g. [Chu81]), and QM for Quine–Morse (e.g. [Die83]). If Monty Python did sketches
about set theory instead of breakfast [Pyt70] no doubt we would also have Morse–Kelley–Morse–Morse–Tarski–Morse, or
MKMMTM.

6Continuing a theme of previous footnotes, both KMCC and Class Collection have different names in the literature. Antos
and Friedman [AF] call them MK∗ and Class Bounding while Gitman and Hamkins [GH] call them KM+ and Class Choice. I
myself previously have used KM+ [Wil17], but in this dissertation I will consider second-order set theories formulated without
the axiom of Powerset. Following the standard of referring to ZFC−Powerset as ZFC− I will call these theories GBC−, KMCC−,
and so forth. Using KM+ would lead to the infelicitous (KM+)−. So KMCC it is.

7A hyperclass is a collection of classes. A hyperclass A is coded if there is a class C so that A = {(C)x : x ∈ V } where
(C)x = {y : (x, y) ∈ C} is the x-th slice of C. Officially, of course, hyperclasses are not objects in the models and any talk of
such is a paraphrase, similar to the usage of classes in first-order set theory.
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Observe that under Global Choice, Class Collection is equivalent to the schema with instances

[∀x∃Y ϕ(x, Y )]⇒ [∃C∀x ϕ(x, (C)x)],

that is where x is the the index of the slice in C witnessing the property for x. This version of the schema
has the flavor of a choice principle, hence it sometimes being called Class Choice.

The set theorist who does not work with second-order set theories may wonder why we would want to
work with something even stronger than KM. To her I have two responses. First, KM behaves badly with
some constructions. For instance, set theorists like to take ultrapowers of the universe using some measure.
In order for  Loś’s theorem to be satisfied for the full second-order language, we need Class Collection. Gitman
and Hamkins showed that KM alone does not suffice [GH]. Second, the natural models of KM are actually
models of KMCC. If κ is inaccessible then (Vκ, Vκ+1) is a model of KMCC. This may not satisfy the skeptic
who is worried about a jump in consistency strength, but we will see in chapter 2 that the skeptic need not
worry, as KMCC does not exceed KM in consistency strength.

It is immediate that KM is stronger than GBC. Indeed, KM proves the existence of Σ1
k truth predicates

for every (standard) k. Therefore, KM proves Con(ZFC) so once we see that GBC and ZFC are equiconsistent
we will see that the separation is also in terms of consistency strength. However, there is a significant gap
between the two theories. We can weaken Comprehension to get intermediate theories, though the following
are still grouped among the strong theories.

Definition 1.4. Let k be a (standard) natural number. The Π1
k-Comprehension Schema Π1

k-CA is the re-
striction of the Comprehension schema to Π1

k-formulae. Note that, over GBc−, this is equivalent to restricting
Comprehension to Σ1

k-formulae.
Recall that Π1

ω refers to the second-order formulae, of any complexity. It will sometimes be convenient
to use Π1

ω-CA or Π1
ω-Comprehension as a synonym for the full second-order Comprehension schema.

Observe that Π1
0-CA is Elementary Comprehension. So we are really only interested in the case where

k > 0.
We get that GBC+ Π1

1-CA proves Con(GBC) and GBC+ Π1
k-CA proves Con(GBC+ Π1

n-CA) for n < k, as
the Σ1

n truth predicate can be defined via a Σ1
n+1-formula. So there is a hierarchy of theories between GBC

and KM, increasing in consistency strength.
It is also useful to consider fragments of Class Collection.

Definition 1.5. Let k be a (standard) natural number. The Σ1
k-Class Collection axiom schema, denoted by

Σ1
k-CC, is the restriction of the Class Collection schema to Σ1

k-formulae. Elementary Class Collection ECC
is another name for Σ1

0-CC.

In chapter 2 we will see that GBC+Π1
k-CA+Σ1

k-CC does not exceed GBC+Π1
k-CA in consistency strength.

See corollary 2.48.

Observation 1.6. Over GBC− we have that Σ1
k-CC implies Π1

k-Comprehension.

Proof. Let ϕ(x) be a Σ1
k-formula, possibly with (suppressed) parameters. Apply the instance of Class

Collection to the formula
(ϕ(x) ∧ Y = {x}) ∨ (¬ϕ(x) ∧ Y = ∅)

to get a class C so that (C)x = {x} if ϕ(x) and (C)x = ∅ otherwise. Then, {x : ϕ(x)} = {x : (C)x 6= ∅} ∈ X ,
as desired.

On the other hand, Gitman and Hamkins [GH] produced a model of KM which does not satisfy even
Σ1

0-Class Collection.
Between the weak GBC and the strong Π1

k-CA we have the medium theories.

Definition 1.7. We define the Elementary Transfinite Recursion schema ETR. This schema asserts that
recursions of first-order properties along well-founded relations have solutions. Formally, let ϕ(x, Y,A) be a
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first-order formula, possibly with a class parameter A and let R be a well-founded class relation. Denote by
<R the transitive closure of R. The instance of ETR for ϕ and R asserts that there is a class S ⊆ domR×V
which satisfies

(S)r = {x : ϕ(x, S � r,A)}

for all r ∈ domR. Here, (S)r = {x : (r, x) ∈ S} denotes the r-th slice of S and

S � r = S ∩ ({r′ ∈ domR : r′ <R r} × V )

is the partial solution below r.

One example of an elementary recursion is the Tarskian definition of a (first-order) truth predicate.
Thus, GBC + ETR proves Con(ZFC) and thereby exceeds GBC in consistency strength. On the other hand,
GBC + Π1

1-CA proves Con(GBC + ETR) (see [Sat14]) so ETR sits below the strong second-order set theories.
It is equivalent, over GBC, to formulate ETR for recursions over well-founded relations, well-founded

partial orders, or well-founded tree orders. See [GH17, lemma 7].
We get fragments of ETR by restricting the length of recursions.

Definition 1.8. Let Γ be a class well-order. Then ETRΓ is the Elementary Transfinite Recursion schema
restricted to well-orders of length ≤ Γ.

There is a subtlety here. Namely, the issue is whether ETRΓ can be expressed as a theory in the language
L∈ of set theory. If Γ is a definable well-order, say Γ = ω or Γ = Ord, then this can be done in the obvious
way. Different models of set theory may disagree on what Ord is, but it is sensible to ask whether they
satisfy ETROrd.

But we will also be interested in the case where Γ is a specific well-order, possibly undefinable. To be
more precise, consider a model (M,X ) of second-order set theory with Γ ∈ X a well-order. We can then
ask whether (M,X ) |= ETRΓ. This may not expressible as a theory in the language L∈ of set theory, but
because Γ ∈ X we can use it as a parameter to define ETRΓ in the expanded language L∈(Γ).

It will be clear from context which of the two meanings is had in mind, so I will refer to both as simply
ETRΓ.

Let me give an example to illustrate where the distinction matters. Take countable (M,X ) |= GBC+ETRγ
where γ = ωM1 . Assume that (M,X ) 6|= ETRγ·ω. We will see in chapter 3 that this assumption can be made
without loss—if (M,X ) does satisfy ETRγ·ω then we can throw out classes to get X̄ so that (M, X̄ ) satisfies
GBC + ETRγ but does not satisfy ETRγ·ω. Let g ⊆ M be generic over (M,X ) for the forcing to collapse
ω1 to be countable. It is not difficult to check that (M,X )[g] |= GBC + ETRγ but (M,X )[g] 6|= ETRγ·ω. So
(M,X )[g] will not be a model of the L∈-theory ETRω1

, even though it is a (set) forcing extension of a model
of ETRω1

.
Another issue with expressing ETRΓ as an L∈-theory is that we can have definitions for a well-order Γ

which are highly non-absolute. For instance, suppose Γ is defined as “if V = L then Γ = Ord and otherwise
Γ = ω1”. Then there is a model of GBC+ETRΓ whose L is not a model of GBC+ETRΓ. On the other hand,
as we will see in chapter 3, GBC + ETRΓ as an L∈(Γ)-theory does go down to inner models.8

The reader who is familiar with reverse mathematics may see an analogy to second-order arithmetic.
Namely, three of these theories line up with the strongest three of the “big five” subsystems of second-order
arithmetic: GBC is analogous to ACA0, GBC + ETR is analogous to ATR0 and GBC + Π1

1-CA is analogous
to the subsystem of second-order arithmetic which is referred to as Π1

1-CA0. At the highest level, KM is
analogous to Z2, full second-order arithmetic. This analogy can be useful to keep in mind. However, the
reader should beware that results from arithmetic do not always generalize to set theory. For example,
Simpson proved that there is no smallest β-model of ATR0—see [Sim09] for a proof. But there is a smallest
β-model of GBC + ETR, as we will see in chapter 4. (For the reader who does not know what a β-model is,
we will get to that later in this section).

8There is a technical caveat here. Namely, Γ must be sufficiently nice over the inner model to avoid pathologies such as
Γ ⊆ L which codes 0]. See theorem 3.16 for details.
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We will briefly return to this analogy at the end of chapter 4, after we have seen enough theorems about
models of second-order set theories to satisfactorily explore its limits.

1.1.2 Doing without Powerset

All of the second-order set theories considered so far include that the sets satisfy ZFC. But we can ask for
less out of the first-order part. We get variants on all of the above theories by dropping the requirement
that the first-order part satisfy Powerset.

Definition 1.9. The first-order set theory ZFC− is axiomatized by Extensionality, Pairing, Union, Infinity,
Foundation, Choice, Separation, and Collection.

The reader should be warned that in the absence of Powerset that Collection is stronger than Replacement
[Zar96] and thus we do not want to use Replacement to axiomatize ZFC−, as the resulting theory is badly
behaved; see [GHJ16] for some discussion of how this theory misbehaves.

We get “minus versions” of all the above-defined second-order set theories by dropping the requirement
that the first-order part satisfy Powerset. I will give one definition in full and leave it to the reader to fill in
the pattern for the others. The way to think of them is that, for example, KM− is KM−Powerset. (But one
should keep in mind the Collection versus Replacement issue.)

Definition 1.10. The second-order set theory GBC− is axiomatized by the following.

• ZFC− for sets.

• Extensionality for classes.

• Class Replacement.

• Global Choice, in the form “there is a bijection Ord→ V ”.

• Elementary Comprehension.

In the absence of Powerset, the various equivalent forms of Global Choice are no longer equivalent. (See
section 1.2 for a proof.) The strongest is the assertion that there is a bijection from Ord to V , or equivalently,
that there is a global well-order of ordertype Ord. I adopt this strongest version as the official form of Global
Choice for GBC−, though at times we could get away with less.

Models of, say KMCC− are not hard to come by. Indeed, KMCC− is much weaker than ZFC in consistency
strength. In a model of ZFC if κ is a regular uncountable cardinal then (Hκ,P(Hκ)) |= KMCC−. A special
case of particular interest is that of the hereditarily countable sets: (Hω1

,P(Hω1
) is a model of KMCC− +

every set is countable.

1.1.3 Models of second-order set theory

An important theme of this work is the following: given a fixed model M of first-order set theory what can
be said about possible second-order parts that can be put on M to make a model of some second-order set
theory? It will be convenient to have a name for these possible collections of classes.

Definition 1.11. Let M be a model of first-order set theory and T be some second-order set theory. A
T -realization for M is a set X ⊆ P(M) so that (M,X ) |= T . If M has a T realization then we say M is
T -realizable.

Many properties of first-order models can also be had by second-order models, via the exact same defini-
tion. For instance, (M,X ) is ω-standard (synonymously, is an ω-model) if ωM is well-founded. One important
property is transitivity.
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β-models
transitive
models

ω-models all models

Figure 1.1: Some classes of models of second-order set theory.

Definition 1.12. A model (M,X ) of second-order set theory is transitive if its membership relations are
the true ∈. This is equivalent to requiring that M is transitive, due to our convention of only considering
models so that X ⊆ P(M).

It is well-known that transitive models of ZFC are correct about well-foundedness: if transitive M |= ZFC
thinks that R ∈ M is a well-founded relation then R really is well-founded. (Indeed, the same is true for
much weaker theories, e.g. ZFC−.) This does not hold for transitive models of second-order set theories.
While they will be correct about whether set relations are well-founded they can be wrong about whether
a class relation is well-founded.9 Models of second-order set theory which are correct about which of their
class relations are well-founded are of special interest.

Definition 1.13. A model (M,X ) of second-order set theory is a β-model if its membership relations are
well-founded and it is correct about well-foundedness. That is, if R ∈ X is a relation which (M,X ) thinks
is well-founded then R really is well-founded. (The inverse direction, that if R is well-founded then (M,X )
thinks R is well-founded is always true for well-founded models by downward absoluteness.)

Observe that every β-model is isomorphic to a transitive model, so we can usually assume without loss
that a β-model is transitive.

The following observation shows that the distinction between β-model and transitive model does not
arise a certain class of models, which includes many natural models considered by set theorists.

Observation 1.14. Suppose Vα |= ZFC− is transitive with cof α > ω. Then (Vα,X ), equipped with the true
membership relation, is a β-model for any X ⊆ P(Vα).

Proof. Suppose R ∈ X is ill-founded (i.e. from the perspective of V ). But witnesses to ill-foundedness are
countable sequences and Vα is closed under countable sequences. So (Vα,X ) thinks that R is ill-founded.
Since R was arbitrary, (Vα,X ) is correct about well-foundedness.

We will also be interested in various ways models may be contained within each other. The basic notion
is that of a submodel. This is a familiar concept, but let me give a definition specialized to the context of
second-order set theory.

Definition 1.15. Let (M,X ) and (N,Y) be models of second-order set theory. Say that (M,X ) is a
submodel of (N,Y), written (M,X ) ⊆ (N,Y), if M ⊆ N , X ⊆ Y, and the membership relation for (M,X ) is
the restriction of ∈(N,Y) to (M,X ).

9For the reader who was previously unaware of this folklore result, in chapter 4 we will construct, as a by-product toward
other goals, transitive models which are wrong about well-foundedness.
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This definition can be strengthened in various ways.

Definition 1.16. Let (M,X ) and (N,Y) be models of second-order set theory.

• Say that (M,X ) is a V -submodel of (N,Y) if M = N and X ⊆ Y. The name is because in this case
V (M,X ) = V (N,Y).

• Say that (M,X ) is an Ord-submodel of (N,Y) if (M,X ) ⊆ (N,Y) and OrdM = OrdN . The name is

because in this case Ord(M,X ) = Ord(N,Y).

• Say that (M,X ) is an inner model of (N,Y) if (M,X ) is an Ord-submodel of (N,Y) and X is definable
over (N,Y), possibly via a second-order formula using parameters. Note that it is automatic that
M ∈ Y, since M ∈ X ⊆ Y.

• Let (M,X ) be a V -submodel of (M,Y). Say that (M,X ) is a coded V -submodel of (M,Y) if X is coded
in Y. That is, there is a single class C ∈ Y so that X = {(C)x : x ∈M}.

The reader may find examples to be helpful. Suppose κ is inaccessible and that Lκ 6= Vκ. Then
(Vκ,Def(Vκ)) |= GBc is a V -submodel of (Vκ,P(Vκ)) |= KMCC and (Lκ,Def(Lκ)) |= GBC is an Ord-submodel
of (Vκ,P(Vκ)). In fact, they are both inner models because P(Vκ) contains truth predicates for all A ⊆ Vκ
and can thus uniformly pick out which classes are in Def(A).

1.2 Verifying the axioms

Many times in this dissertation we will find ourselves in the following situation. We have some first-order
model M of set theory and some X ⊆ P(M) a collection of classes over M . We will want to be able to
say something about the theory of (M,X ). In this section I present some basic tools one can use in this
situation, focusing here on the axioms of GBC.

Let us begin with the most obvious of observations.

Observation 1.17. A second-order model of set theory (M,X ) with X ⊆ P(M) and the true ∈ for its
set-class membership relation always satisfies Extensionality for classes.

To see that (M,X ) |= GBc satisfies Global Choice one just has to see that X contains a bijection Ord→ V .
As with the ordinary axiom of choice there are several equivalent forms.

Fact 1.18. Let (M,X ) |= GBc be a second-order model of set theory. The following are equivalent.

1. X contains a bijection Ord→ V .

2. X contains a global choice function, that is a class function F whose domain is the class of nonempty
sets so that F (x) ∈ x for all x.

3. X contains a global well-order, that is a well-order whose domain is the entire universe of sets.

4. X contains a global well-order of ordertype Ord.

Proof. Both (1⇒ 2) and (4⇒ 1) are obvious. That leaves only (2⇒ 3) and (3⇒ 4) to check.
(2 ⇒ 3) Using the global choice function F we can well-order the Vα’s in a coherent fashion. Suppose

we have already defined a well-order <α of Vα. Then define a well-order <α+1 of Vα+1 which extends <α
by using the global choice function: <α+1 is simply F (w), where w is the set of well-orders of Vα+1 which
extend <α. Then

⋃
α<α is a global well-order (of ordertype Ord, in fact).

(3⇒ 4) Let <∗ be a global well-order. We define a new global well-order <† as:

x <† y iff rankx < rank y or (rankx = rank y and x <∗ y).

Then <† has ordertype Ord.
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As was mentioned in subsection 1.1.2, these are not all equivalent in the absence of Powerset. We officially
adopted the strongest form of Global Choice for the powerset-free context, whose equivalent forms are “there
is a bijection Ord → V ” and “there is a global well-order of ordertype Ord”. Let us quickly see that the
other forms of Global Choice are weaker in this context.

Fact 1.19.

1. Over KMCC−− Global Choice,10 the existence of a global well-order does not imply the existence of a
global well-order of ordertype Ord.

2. (Shapiro [Sha91, theorem 5.4]) Assume ADR, asserting the determinacy of every two-player, perfect
information game where the two players play reals, is consistent with ZF.11 Then over KMCC−− Global
Choice, the existence of a global choice function does not imply the existence of a global well-order.12

Proof Sketch. (1) Force if necessary to get the continuum to have size ℵ2. Then one can check that
(Hω1

,P(Hω1
)) is a model of all the axioms of KMCC− except Global Choice. Easily, it has a global well-order

(externally seen to have ordertype ω2) but has no global well-order of ordertype ω1 = OrdHω1 .
(2) Assume ZF + ADR. Consider the model (M,X ) = (Hω1 ,P(Hω1)). One can check it satisfies all the

axioms of KMCC−− except Global Choice. Observe that X cannot contain a global well-order, as that would
imply there is a well-order of R in the ambient universe, contradicting ADR. But X does have a global choice
function, which arises from a winning strategy for the following game: Player I plays a real which codes a
nonempty hereditarily countable set. Player II responds by playing a real, then the game ends. Player II
wins if her real codes an element of the set coded by player I’s real and otherwise player I wins. This game
is determined by ADR and it is clear that player I could not possibly have a winning strategy. So player II
has a winning strategy from which we can extract a global choice function for M .

Note that (2) requires far from the full strength of ADR, only needing that one can have clopen determi-
nacy for games played with reals while not having a well-order of the reals. The reader who wishes to know
the exact strength needed for (2) is welcome to do that work herself.

Next let us see how to check whether our classes satisfy Elementary Comprehension.

Definition 1.20. Let M be a model of set theory with A ⊆M . Then Def(M ;A) is the collection of classes
of M definable from A, possibly with set parameters. Formally,

X ∈ Def(M ;A)⇔ X = {x ∈M : (M,A) |= ϕ(x, p)} for some first-order ϕ and p ∈M.

More generally, let X be a collection of classes from M and Ai, for i in some index set I, be classes of
M . Then Def(M ;X , Ai : i ∈ I) is the collection of classes of M definable from (finitely many) classes from
X ∪ {Ai : i ∈ I}.13

I will write Def(M) to refer to Def(M ; ∅).

Observation 1.21. Let (M,X ) be a second-order model of set theory. Then (M,X ) satisfies Elementary
Comprehension if and only if X is closed under first-order definability—i.e. for any A0, A1, . . . , An ∈ X we
have Def(M ;A0, A1, . . . , An) ⊆ X .

Proof. (⇒) If B ∈ Def(M ;A0, A1, . . . , An) then B was defined from the Ai’s by some first-order formula.
But then Elementary Comprehension yields that B is a class.

10Note that this theory includes the well-ordering theorem for sets, which is necessary to have a global well-order at all.
11See [Gaß94] for a proof which does not need this consistency assumption.
12The context for Shapiro’s result here is second-order logic, as is the context for Gaßner’s paper cited in the previous

footnote. This is a reformulation of his result into the context of second-order set theory.
13Two remarks are in order. First, this definition is ambiguous, as a set can be both a subset of M and also a collection of

subsets of M . This happens if, for instance, M is transitive and X ⊆M . But this will not arise in practice and we will sacrifice
complete unambiguity in favor of readable notation. Second, while we could generalize the definition further and allow multiple
collections Xi of classes of M , this is not needed for this work. We will be interested in Def(M ;X , A) when (M,X ) is a model
of second-order set theory.
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(⇐) Fix class A0, A1, . . . , An and a formula ϕ(x,A0, A1, . . . An). Then

{x : ϕ(x,A0, A1, . . . , An)}

is a class because it is definable from the Ai’s.

In general Class Replacement can be tricky to check. Nevertheless, there are some circumstances where
it is trivial.

Observation 1.22. Suppose (M,X ) |= GBc−. Let (N,Y) be an Ord-submodel of (M,X ) which satisfies all
the axioms of GBC− except possibly Class Replacement. Then in fact (N,Y) satisfies Class Replacement.

Proof. Suppose F ∈ Y is a class function and a ∈ N is a set so that F ′′a 6∈ N . By Global Choice in (N,Y),
there is a bijection in Y between F ′′a ∈ Y and OrdN . So the failure of Class Replacement for F and a gives
a map in Y from α ∈ OrdN to OrdN . But this same map must be in X , contradicting that (M,X ) satisfies
Class Replacement.

This argument does not need Global Choice. It is enough that Y contains a ⊆-increasing sequence〈
nα : α ∈ OrdN

〉
of sets from N so that

⋃
α nα = N . This allows (N,Y) to define a ranking function

relative to this nα-hierarchy, and from that get a map from α to OrdN . In particular, the argument goes
through if N satisfies Powerset, since then it has the Vα-hierarchy.

Observation 1.23. Suppose (M,X ) |= GBc−. Let (N,Y) be an Ord-submodel of (M,X ) satisfying all the
axioms of GBc except possibly Class Replacement. Then in fact (N,Y) satisfies Class Replacement.

Together these observations give us the tools to check whether X ⊆ P(M) is a GBC-realization (or GBC−-
realization) for M . We do not have such nice tools for stronger theories. Nevertheless, something can be
said. For the medium theories, in chapter 3 we will see that Elementary Transfinite Recursion is equivalent
to the existence of certain classes, namely iterated truth predicates. A similar result will hold for ETRΓ.

For stronger forms of Comprehension, it is true that (M,X ) satisfying Π1
k-Comprehension is equivalent

to X being closed under Π1
k-definability. But this means, of course, definability over (M,X ). So in practice

this characterization is not useful and we want other tools.
One specific situation of interest is when our model arises as a forcing extension of a structure already

satisfying a strong form of Comprehension. In this case we can say something about whether our model
also satisfies Comprehension. More generally, we can ask about the preservation of the axioms under class
forcing, to which we now turn.

1.3 Preserving the axioms

There is more than one approach to formalize class forcing. I will take the following. We work over a model
(M,X ). A forcing notion P ∈ X is a separative partial order with a maximum element 1. If p ≤ q we
say that p is stronger than q. Two conditions p and q are compatible, denoted p ‖ q, if there is r ≤ p, q.
Otherwise, p and q are incompatible, denoted p⊥ q.

Given P we can define the collection of P-names. These are sets or classes whose elements are of the form
(τ, p) where τ is a P-name and p ∈ P. This prima facie circular definition is actually a recursion on ranks.
The convention here will be to use capital letters such as Σ for proper class P-names and lowercase letters
such as σ for set P-names. In case I want to refer to either, I will use lowercase letters.

The forcing relation 
 is defined recursively, via the following schema.

Definition 1.24. Let p ∈ P and σ, τ, . . . be P-names. Unless otherwise indicated, they may be either set
names or class names. A forcing relation 
 = 
P for P is a relation between p ∈ P and formulae in the
forcing language which satisfies the following recursive schema on its domain.
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• p 
 σ ∈ τ if and only if there are densely many q ≤ p so that there is (ρ, r) ∈ τ with q ≤ r and
q 
 σ = ρ;

• p 
 σ ⊆ τ if and only if for all (ρ, r) ∈ σ and all q ≤ p, r we have q 
 p ∈ τ ;

• p 
 σ = τ if and only if p 
 σ ⊆ τ and p 
 τ ⊆ σ;

• p 
 ϕ ∧ ψ if and only if p 
 ϕ and p 
 ψ;

• p 
 ¬ϕ if and only if no q ≤ p forces ϕ;

• p 
 ∀xϕ(x) if and only if p 
 ϕ(σ) for every set P-name σ; and

• p 
 ∀Xϕ(X) if and only if p 
 ϕ(Ȧ) for every class P-name Ȧ.

If Φ is a collection of formulae say that P admits a forcing relation for Φ (or, synonymously, 
P exists for
Φ) if there is a class 
 which satisfies the above schema which covers all ϕ ∈ Φ. For ϕ a formula, P admits
a forcing relation for ϕ if P admits a forcing relation for the collection of all instances of subformulae of ϕ.
Note that if 
P exists for the atomic formulae then, by an induction in the metatheory, 
P exists for all ϕ.

Observe that each step in this recursion, except the last, is done in a first-order way. As such, it is
immediate that GBC+ETR proves the forcing relation 
P exists for first-order formulae. Then 
P restricted
to subformulae of a second-order formula is a definable hyperclass, via an induction in the metatheory.

Indeed, the existence of 
P for every P is equivalent, over GBC, to a fragment of ETR.

Theorem 1.25 ([GHHSW17]). Over GBC the following are equivalent.

• ETROrd, Elementary Transfinite Recursion restricted to well-orders of length ≤ Ord.

• The class forcing theorem, asserting that for every class forcing P and every formula ϕ in the forcing
language for P admits a forcing relation 
P for subformulae of ϕ.

• The uniform first-order class forcing theorem, asserting that every class forcing P admits a forcing
relation 
P for all first-order formulae in the forcing language.

• The atomic class forcing theorem, asserting that every class forcing P admits a forcing relation for
atomic formulae.

Nevertheless, GBC− suffices to prove that 
P exists for a nice collection of class forcings.

Definition 1.26 (S. Friedman [Fri00]). Let P be a forcing notion.

• D ⊆ P is predense below p (or predense ≤ p) if for every q ≤ p is compatible with an element of D.

• P is pretame if given any set-indexed sequence 〈Di : i ∈ a〉 of dense subclasses of P and any p ∈ P there
is q ≤ p and a sequence 〈di : i ∈ a〉 of predense ≤ q subsets of P with di ⊆ Di for all i ∈ a.

• (D,D′) is a predense below p partition (or a predense ≤ p partition) if D ∪ D′ is predense ≤ p and
p ∈ D and p′ ∈ D′ implies p⊥ p′.

• Two sequences D = 〈(Di, D
′
i) : i ∈ a〉 and E = 〈(Ei, E′i) : i ∈ a〉 of predense≤ p partitions are equivalent

below q (or equivalent ≤ q) if for each i the collection of r ∈ P so that r meets Di if and only if r meets
Ei is dense below q.14

• P is tame if it is pretame and additionally for every p ∈ P and every set a there is q ≤ p and ordinal α
so that if D = 〈(Di, D

′
i) : i ∈ a〉 is a sequence of predense ≤ q partitions then

{r ∈ P : D is equivalent ≤ r to some sequence E ∈ Vα of predense ≤ q partitions}

is dense below q.
14To clarify, r meets predense D means that r ≤ q for some q ∈ D.
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Theorem 1.27 (S. Friedman, Stanley). GBC− proves that 
P exists for ϕ for every pretame forcing P and
every formula ϕ in the forcing language.15

Besides allowing for the forcing language to be definable in a weak theory, the other role of pretameness
is in the preservation of the axioms. First, let us make precise how forcing extensions are built. The
case for transitive models is well-known, but we can also work over non-transitive models. We work in
(M,X ) |= GBC− and assume that for our forcing notion P ∈ X we have that for every first-order formula ϕ
of the forcing language the forcing relation 
P restricted to instances of subformulae of ϕ exists as a class in
X . In particular, 
P for atomic formulae is a single class in X . Given a generic G ⊆ P and this class we can
define the forcing extension as follows.

Work externally to (M,X ), as is necessary if we have a generic. Define the following relations on set
P-names:

σ ∈G τ ⇔ ∃p ∈ G p 
 σ ∈ τ
σ =G τ ⇔ ∃p ∈ G p 
 σ = τ

and the similar relations ∈G between set P-names and class P-names and =G between class P-names. It
can be straightforwardly checked that =G is an equivalence relation16 and ∈G is a congruence modulo =G,
meaning that if σ ∈G τ =G ρ then σ ∈G ρ. Given a P-name σ let [σ]G denote the equivalence class of
σ modulo =G. Let [M ]G denote the collection of equivalence classes of set P-names and [X ]G denote the
collection of equivalence classes of class P-names.

Definition 1.28. Let (M,X ), P, and G be as above. Then the forcing extension of (M,X ), denoted
(M,X )[G], is the structure ([M ]G, [X ]G) with membership relation ∈G. To refer to the sets of the extension
I will use M [G] and to refer to the classes of the extension I will use X [G].

Proposition 1.29 (The truth lemma). Consider a model (M,X ) of set theory with forcing notion P ∈ X
and generic G ⊆ P. Suppose that for each ϕ in the forcing language for P that P admits a forcing relation
for ϕ in X . Let ϕ(x0, . . . , xn, Y0, . . . , Ym) be a formula, τ0, . . . τn be set P-names, and Σ0, . . . ,Σm be class
P-names. Then,

(M,X )[G] |= ϕ([τ0]G, . . . , [τn]G, [Σ0]G, . . . , [Σm]G)

if and only if

∃p ∈ G p 
 ϕ(τ0, . . . , τn,Σ0, . . . ,Σm).

Proof sketch. By induction on formulae. See [GHHSW17] for more detail.

In particular, if (M,X ) is countable then we can always find a generic G ⊆ P. Externally to (M,X ) line
up the countably many dense subclasses of P in X in ordertype ω and then inductively meet each of them.
As such, for countable models the only possible impediment to having forcing extensions is having forcing
relations. But so long as we only look at pretame forcings this is no impediment.

Let us turn now to the preservation of the axioms under class forcings. First, let us see the importance
of pretameness to this question.

Theorem 1.30 ([Sta84] for (1 ⇔ 2), [HKSa] for the rest). Consider (M,X ) |= GBc− and let P ∈ X be a
forcing notion.17 The following are equivalent.

1. P is pretame.

15Friedman [Fri00] proved the theorem with the assumption of Powerset, while Stanley [Sta84] independently gave a proof
which did not need that assumption.

16To be clear, both the set-set and class-class relations =G are equivalence relations on, respectively, the set P-names and
the class P-names.

17Holy, Krapf, and Schlicht formulate their result in terms of countable transitive models, but it is not hard to see that their
result holds more generally.



CHAPTER 1. A FIRST LOOK 15

2. P preserves GBc−.

3. P preserves Collection.

4. P preserves Replacement.

5. P preserves Separation and P satisfies the class forcing theorem.

Tameness has a similar importance for preserving GBc.

Theorem 1.31 (Friedman [Fri00]). Consider (M,X ) |= GBc and let P ∈ X be a forcing notion. The
following are equivalent.

1. P is tame;

2. P is pretame and preserves Powerset; and

3. P preserves GBc.

I will not prove these results in full. But as a warmup towards showing that pretame forcings preserve
strong forms of Comprehension, let us see that pretame forcings preserve Elementary Comprehension.

Proposition 1.32. Let G ⊆ P be generic for (M,X ) |= GBC with P ∈ X admitting a forcing relation for
each ϕ in the forcing language. Then (M,X )[G] satisfies Elementary Comprehension.

In particular, pretame forcings always satisfy the forcing theorem so this proposition works for all pretame
forcings over some model.

Proof. Consider an instance of Elementary Comprehension. That is, we have a first-order formula ϕ(x, P )
with possible parameter P and we want to see that the class {x : (M,X )[G] |= ϕ(x, P )} ∈ X [G]. Towards
this end, let Ṗ ∈ X be a name for P . Now consider the name Ḃ = {(σ, p) : p 
 ϕ(σ, Ṗ )}. Then, because P
satisfies the forcing theorem, Ḃ ∈ X . So

ḂG = {σG : σ ∈M ∧ ∃p ∈ G p 
 ϕ(σ, Ṗ )} = {x ∈M [G] : (M,X )[G] |= ϕ(x, P )}

is in X .

In fact, the same argument applies higher up.

Corollary 1.33. Class forcing preserves Π1
k-Comprehension, for 1 ≤ k ≤ ω.18 That is, if (M,X ) |=

GBC + Π1
k-CA and G ⊆ P ∈ X is generic over (M,X ) then (M,X )[G] |= Π1

k-CA.

Proof. Because (M,X ) |= Π1
k-CA it in particular satisfies ETROrd, so it satisfies the uniform first-order class

forcing theorem. Now run the same argument as before, but use that 
P restricted to subformulae of a
Σ1
n-formula ϕ, for 1 ≤ n < ω, is Σ1

n-definable from 
P restricted to first-order formulae.

We are also interested in the preservation of (fragments) of Class Collection.

Theorem 1.34. Let G ⊆ P be generic for (M,X ) |= KMCC with P ∈ X a pretame forcing. Then (M,X )[G]
satisfies Class Collection.

Proof. Suppose that (M,X )[G] |= ∀α∃Y ϕ(α, Y,A), for some class A. We want to find a class C ∈ X [G] so
that (M,X )[G] |= ∀α ϕ(x, (C)x, A). Take p ∈ G forcing ∀α∃Y ϕ(x, Y, Ȧ), where Ȧ is a P-name for A. Fix
an ordinal α Then p 
 ∃Y ϕ(α̌, Y, Ȧ).

I claim there is a class name Ẏα so that p 
 ϕ(α, Ẏα, Ȧ). To see this: let D be the dense below p class
of conditions q ≤ p so that q 
 ϕ(α, Ẏq, Ȧ) for some class name Ẏq. This D is in X by an instance of
Comprehension. Now construct a maximal antichain N ⊆ D by recursion using a bijection b : Ord → D.

18Recall that Π1
ω-Comprehension is another name for the full Comprehension schema.
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First, put b(0) into N . Continuing upward, we include b(ξ) in N if and only if b(ξ) is incompatible with all
the b(ζ) for ζ < ξ we have already committed to being in N . We can now use this antichain N to build the
desired Ẏα via a mixing argument. Namely,

Ẏα = {(σ, r) : ∃q, q′ ∈ N ∃p (σ, p) ∈ Ẏq and r ≤ q′, p}).

Note that this definition uses Class Collection to pick the Ẏq corresponding to each q ∈ N . Now given these

names Ẏα for each α we can put them together to get a name for a class C so that the αth slice of C is the
interpretation of Ẏα.

Corollary 1.35. Let G ⊆ P be generic for (M,X ) |= GBC + Π1
k-CA + Σ1

k-CC, for k ≥ 1, with P ∈ X a
pretame forcing. Then (M,X )[G] satisfies Σ1

k-Class Collection.

Proof. In the above argument we used Comprehension to get D and Class Collection to choose the Ẏq. This
instance of Comprehension used p 
 ϕ, which is Σ1

k-definable for a Σ1
k formula ϕ. Similarly, the instance of

Class Collection is also Σ1
k. So both go through in this context.

I end this section with an open question. We have seen that strong second-order set theories are preserved
by tame forcing, as is GBC. What about intermediate theories?

Question 1.36. Is ETR preserved by tame forcing?

1.4 Some basic constructions

In this section I survey some basic constructions for models of second-order set theories. I will focus on
models of the weak theories, as the constructions for stronger theories are not so basic.

Observation 1.37. Let M |= ZFC and Def(M) consist of the definable, possibly with parameters, sub-
sets of M . Then (M,Def(M)) |= GBc. If additionally, Def(M) contains a global well-order of M then
(M,Def(M)) |= GBC. Similarly, if M |= ZFC− then (M,Def(M)) |= GBc−, or GBC− in case M has a
definable global well-order of ordertype Ord.

Of course, M may not have a definable global well-order. So in general it requires more to get a GBC-
realization (or GBC−-realization) for M .

Definition 1.38. Let M be a model of first-order set theory. Say that A ⊆M is amenable to M if A∩x ∈M
for all x ∈M .

Definition 1.39. Let T be a second-order set theory and M be a model of first-order set theory. Say that
A ⊆M is T -amenable to M if there is a T -realization X for M with A ∈ X .

A special case of interest is when T is GBc or GBc−.

Observation 1.40. A is GBc−-amenable to M if and only if (M,A) satisfies the Separation and Replacement
schemata for formulae in the expanded language.

Proof. (⇒) Because GBc− includes Elementary Comprehension and Class Replacement.
(⇐) Then Def(M ;A) is a GBc−-realization for M .

It is obvious that if G is a GBc-amenable global well-order of M then (M,Def(M ;G)) |= GBC. Accord-
ingly, to show that M is GBC-realizable we want to find such a global well-order.

Theorem 1.41 (Folklore). Suppose M |= ZFC is countable. Then M is GBC-realizable. In general, if
(M,X ) |= GBc is countable then there is Y ⊇ X a GBC-realization for M .

The tool used in this proof will be Cohen-forcing to add a generic subclass of Ord.
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Definition 1.42. The forcing to add a Cohen-generic subclass of Ord, denoted Add(Ord, 1), consists of all
set-sized partial functions from Ord to 2, ordered by reverse inclusion.

Lemma 1.43. Over GBc, the forcing Add(Ord, 1) is tame.

Proof. First let us see that Add(Ord, 1) is pretame. Because Add(Ord, 1) is < κ-distributive for every κ,19

below any set-sized collection of open dense subclasses of Add(Ord, 1) we can find a single dense subclass.
That is, if 〈Di : i ∈ a〉 is a set-indexed collection of open dense subclasses then we can find a dense subclass
D so that any generic which meets D must meet all the Di. As such, we may assume without loss that
that we are dealing with a single dense subclass. That is, the setup is that we have a dense class D and a
condition p. We want to find a condition q ≤ p and a set d ⊆ D which is predense ≤ q. But this is trivial:
take q ≤ p which meets D and let d = {q}.

Finally, Add(Ord, 1) preserves Powerset because forcing with it does not add any new sets, which in turn
is because it is < κ-closed for every cardinal κ.

This appeared in the proof of the above lemma, but it is important enough to be stated on its own.

Observation 1.44. Over GBc, forcing with Add(Ord, 1) does not add new sets.

We can now prove theorem 1.41.

Proof of theorem 1.41. It suffices to prove the more general result, since we get the other result by considering
X = Def(M) to consist of the (first-order) definable classes.

We obtain Y by forcing over (M,X ) with Add(Ord, 1). That is, let C ⊆ OrdM be generic over (M,X ) for
Add(Ord, 1). Then Y = X [C]. So (M,Y) |= GBc and in particular the class C is GBc-amenable to M . We
want to see that we can define a global well-order from C. To do this we use that every set of ordinals in M
is coded into C. This is because sets can be coded as sets of ordinals—to code x take an isomorphic copy of
∈ � TC({x}) as a set of pairs of ordinals, which can be coded as a set of ordinals via a pairing function—and
so by density every set is coded into C. Thus, we can define a global well-order <C as x <C y if the first
place x is coded into C comes before the first place y is coded into C.

Corollary 1.45 (Folklore). GBC is conservative over ZFC. That is, if ϕ is a first-order sentence in the
language of set theory then GBC ` ϕ if and only if ZFC ` ϕ.

Proof. Suppose otherwise. Then there is a countable M |= ZFC which satisfies ¬ϕ while every model of GBC
satisfies ϕ. But M has a GBC-realization X and (M,X ) |= GBC + ¬ϕ, a contradiction.

We can also get a version of theorem 1.41 that applies to models of ZFC−, but we need a little more from
our model. In the ZFC context we knew that Add(Ord, 1) did not add sets because it was < κ-closed for
every κ. Let me quickly sketch the argument so we know what we would like to generalize.

Fix a set name ȧ. Without loss of generality we may assume that ȧ gives a set of ordinals. That is,
suppose C ⊆ Add(Ord, 1) is generic and consider p ∈ C so that p 
 ȧ ⊆ κ̌. Let us now see that the ground
model can interpret ȧ. Start with p0 = p. Given pα for α < κ extend pα to pα+1 which decides whether
α̌ ∈ ȧ. And at limits use < κ-closure to continue the construction. And because Add(Ord, 1) is < κ+-closed
we get pκ below all the pα’s for α < κ. Moreover, we may make the choices so that pα is always in C, since
the classes we are meeting are dense. So pκ, which is in the ground model, contains all the information that
the generic uses to interpret ȧ. So ȧC is in the ground model.

The same argument will work for a model of ZFC− without a largest cardinal. But if the model does
have a largest cardinal, that will not work. For concreteness, suppose we are working over a model of ZFC−

plus “every set is countable”. To show that Add(Ord, 1) we want to be able to make countably many choices
according to some definable procedure and have that those choices cohere. This would give us the desired
pω which has all the information needed to interpret the name ȧ. That is, we want ω-Dependent Choice for
definable procedures. In general, if our model has larger cardinals, then we want this but with ω replaced
with the largest cardinal in the model.

19Add(Ord, 1) is < κ-distributive because it is < κ-closed. Checking this is an easy exercise.
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Definition 1.46. Work in the context of ZFC− and let κ be a cardinal. The principle of Definable κ-
Dependent Choice asserts the following: if T is a definable tree of sequences of length < κ so that for all
α < κ each node in T of length α has a successor in T , then T has a branch.

Remark 1.47. Observe that the branch is a set. If it were a definable class, then because κ is a set and the
branch has length κ, Replacement would imply that the branch is a set.

Definable Dependent Choice is not a theorem of ZFC−. S. Friedman and Gitman [FG17] produced a
model of ZFC− + “every set is countable” where Definable ω-Dependent Choice fails.

If our model of ZFC− with a largest cardinal κ satisfies definable κ-dependent choice then Add(Ord, 1)
over that model will be pretame and not add any new sets. So in that case we can force with Add(Ord, 1)
to add a global well-order without adding any new sets. Indeed, the two are equivalent.

Proposition 1.48. Let M |= ZFC−I have a largest cardinal κ. Then the following are equivalent:

1. M satisfies Definable κ-Dependent Choice; and

2. M admits a GBC−-amenable global well-order.

Proof sketch. We sketched (1⇒ 2) above. For (2⇒ 1), suppose G : OrdM → VM is GBC−-amenable to M .
Work in (M,X ) |= GBC− with G ∈ X . We can use G to make choices along κ-trees. Since X contains every
definable class this yields that M satisfies Definable κ-Dependent Choice.

For a related result, Gitman, Hamkins, and Johnstone [GHJ16] showed that, over ZFC−, Definable ω-
Dependent Choice is equivalent to the Reflection schema, i.e. the schema asserting that for every formula
ϕ(x, a) and set a that there is a transitive set t 3 a so that ϕ(x, a) reflects to t.

Finally, let me observe that we cannot get a version of corollary 1.45 that works for ZFC−.

Corollary 1.49. The theory GBC− is not conservative over ZFC−.

Proof. As we just saw, GBC− proves the Definable κ-Dependent Choice schema. But Friedman and Gitman
showed that this schema is not a theorem of ZFC−.

Having investigated what happens without powerset, let us now turn to the uncountable. We saw
in theorem 1.41 that every countable model of ZFC is GBC-realizable. This does not generalize to the
uncountable. Let us see why.

Definition 1.50. A model M |= ZFC is called rather classless if every amenable X ⊆M is definable.

Necessarily, every rather classless model has uncountable cofinality. If X ⊆ OrdM has ordertype ω and
is cofinal then it is amenable, because its intersection with an initial segment of OrdM is finite, but not
definable or danger of contradicting Replacement.

Theorem 1.51 (Keisler [Kei74], Shelah [She78]). Any countable model of ZFC has an elementary rank
extension20 to a rather classless model.21

As a consequence if M |= ZFC does not have a definable global well-order then any rather classless
elementary rank extension of M will not have a GBC-realization. Keisler’s theorem also applies to ZFC−, so
there are models of ZFC− which fail to have a GBC− realization.

One might hope that theorem 1.41 could be generalized to stronger second-order set theories. Of course,
this could not work for all countable models of ZFC, as these stronger theories are not conservative over ZFC.
But one might hope that any countable model of a strong enough theory is, say, KM-realizable.

One’s hopes are in vain.

20If M ⊆ N are models of ZFC then say N is a rank extension of M if every new set has a higher rank. For example, if
κ < λ are inaccessible, then Vλ is a rank extension of Vκ.

21Keisler showed this theorem under the assumption of ♦ and the assumption of ♦ was later eliminated by Shelah.
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Proposition 1.52 (Folklore). Consider M |= ZFC so that the truth predicate for M is GBc-amenable. Then
there is a club of ordinals α ∈ OrdM so that VMα ≺M .

Before moving to the proof, let us recall the Tarskian definition of a truth predicate.

Definition 1.53. Let M be a model of first-order set theory. A truth predicate or satisfaction class for M
is a class Tr ⊆M of pairs (ϕ, ā) satisfying the following recursive requirements.

1. If ϕ is atomic then (ϕ, ā) ∈ Tr if and only if ϕ(ā) gives a true fact about M . That is, Tr should declare
a ∈ b to be true if and only if M |= a ∈ b and declare a = b to be true if and only if M |= a = b.

2. (ϕ ∨ ψ, ā) is in Tr if and only if (ϕ, ā) or (ψ, ā) are in Tr.

3. (¬ϕ, ā) is in Tr if and only if (ϕ, ā) is not in Tr.

4. (∃x ϕ(x), ā) is in Tr if and only if there is b ∈M so that (ϕ, baā) is in Tr.

We are interested in adding Tr as a class to M , so in the case that M is ω-nonstandard let us explicitly
require that Tr measures the ‘truth’ of every nonstandard formula.22

Observe that it is a first-order property of a class whether it is a truth predicate, so it does not depend
upon what classes are in the model. Also observe that GBc proves the truth predicate is unique. If two
different classes both satisfy the definition then there must be a minimal place where they disagree on
the truth of (ϕ, ā). But they agree on every previous stage so they must agree on the truth of (ϕ, ā), a
contradiction.

Proof of proposition 1.52. This follows from an instance of the Montague reflection principle. Let Tr be the
truth predicate for M . We can use Tr as a parameter in the formula we are reflecting precisely because it
is GBc-amenable. Namely, reflect to find a club of α so that (VMα ; Tr ∩ VMα ) ≺Σ1

(M ; Tr). Then VMα ≺ M
because by elementarity (VMα ; Tr∩ VMα ) |= (ϕ, ā) ∈ Tr∩ VMα if and only if (M ; Tr) |= (ϕ, ā) ∈ Tr if and only
if M |= ϕ(ā).23

Corollary 1.54. Let T ⊇ GBc− be a second-order set theory which proves the existence of the truth predicate
for the first-order part. Then no first-order theory characterizes which countable models are T -realizable.

In particular this works for T = KM, T = GBC + ETR, or even T = GBC + ETRω.

Proof sketch. Let S be any consistent first-order set theory. Then, by standard results about nonstandard
models, there is M |= S which is ω-nonstandard but not recursively saturated.24 It follows that M does not
admit an amenable truth predicate, so it cannot be T -realizable.

The reader may find this nonstandard trick to be unsatisfactory. But we get a version of corollary 1.54
for ω-models or even transitive models.

Corollary 1.55. Let T ⊇ GBc− be a second-order set theory which proves the existence of the truth predicate
for the first-order part. Suppose that T has an ω-model. Then no first-order set theory characterizes which
ω-standard models are T -realizable. Moreover, suppose T has a transitive model. Then no first-order set
theory characters which transitive models are T -realizable.

22In the literature such a class Tr is called a full satisfaction class. See also chapter 3 for a discussion of truth predicates
over ω-nonstandard models.

23There is a minor subtlety. Namely, what happens if M is ω-nonstandard? Then Tr makes assertions about the ‘truth’ of
nonstandard formulae, and for such formulae ϕ it does not make sense externally to ask whether M |= ϕ. But this is not an
issue because Tr must be correct about the truth of standard formulae, as can be checked by an easy induction external to the
model.

24For a definition of recursive saturation, see chapter 3.
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For trivial reasons, we need the assumption that T has an ω-model (or transitive model for the moreover).
If T has no ω-models then it is easy to get a first-order set theory characterizing which ω-models are T -
realizable—take your favorite inconsistent theory.

Proof. Suppose S is some first-order set theory. If T + S has no ω-model (or no transitive model, for that
case) then S cannot characterize which ω-models (or transitive models) are T -realizable. So assume that
T + S has an ω-model (M,X ). (Or, for the transitive case, assume (M,X ) is transitive. We will find an
elementary model of M which is not T -realizable, establishing that satisfying S cannot ensure a model is
T -realizable.

The truth predicate for M is in X so it must be GBc-amenable. Now take the least α ∈ OrdM so that
VMα ≺ M . Then N |= S and is ω-standard (or transitive, if M is transitive). I claim that N = VMα is not
T -realizable. Otherwise, by proposition 1.52 there is a club of ordinals β ∈ OrdN so that V Nβ ≺ N . But

V Nβ = VMβ , because M is a rank extension of N . So then VMβ ≺ VMα ≺ M , contradicting the leastness of
α.

Remark 1.56. This argument uses essentially thatM (and hence alsoN) is an ω-model. Suppose (M,X ) |= T ,
where T is as in the corollary, is countable and ω-nonstandard. Let N = VMα , where α ∈ M is least in the
club of ordinals α0 so that VMα0

≺ M , where elementarity here is according to the truth predicate in M . In
particular, N is also countable and ω-nonstandard and has the same theory and standard system25 as M
does. So by a back-and-forth argument we can show that in fact N and M are isomorphic. So because M
is T -realizable, so must N be T -realizable.

To finish off this section, let us see that see that T -amenability for different choices of T can give different
notions. We saw that, for countable models, being GBc-amenable is equivalent to being GBC-amenable. But
for some T , being T -amenable to M is stronger than being GBC-amenable.

Theorem 1.57. Let M |= ZFC be a countable ω-model. Then there is A ⊆ M which is GBC-amenable to
M but is not (GBC + ETRω)-amenable to M . That is, there is a GBC-realization X for M with A ∈ X but
no (GBC + ETRω)-realization Y for M can have A ∈ Y.

Proof. I will show a stronger fact, from which this theorem will immediately follow. Namely, I will show
that there is G ⊆ M which is GBC-amenable but no GBC-realization for M can contain both G and the
truth predicate for M .26 This G will be a carefully constructed Cohen-generic subclass of Ord. I claim that
there is a sequence 〈Di : i ∈ Ord〉 of definable dense subclasses of Add(Ord, 1) so that (1) the sequence is
definable from the truth predicate and (2) meeting every Di is sufficient to guarantee that a filter is generic
over (M,Def(M)). It is obvious that the truth predicate can define a sequence of all the definable subclasses
of Add(Ord, 1). Namely, from the truth predicate can be defined the sequence indexed by (ϕ, a) where the
(ϕ, a)-th dense subclass is the one consisting of all conditions p so that ϕ(p, a) holds (or trivial if ϕ(x, a) does
not define a dense subclass). But this sequence is not of the correct ordertype. However, we can use that
Add(Ord, 1) is < κ-distributive for every cardinal κ to get the ordertype to be Ord. Namely let Di be below
all the open dense subclasses which are definable from parameters in Vi. Then 〈Di : i ∈ Ord〉 is as desired.

We will now use this sequence to define our G. Externally to the model fix an ω-sequence cofinal in

OrdM . Think of this sequence as an OrdM -length binary sequence
〈
bi : i ∈ OrdM

〉
, consisting mostly of

zeros with ones showing up rarely. This sequence is amenable to M , since its initial segments have only
finitely many ones. On the other hand, it is not GBc-amenable since from this sequence we can define a
cofinal map ω → Ord, contradicting an instance of Replacement.

Build G in OrdM many steps, with partial piece gi at the ith step. We start with g0 = ∅. Given gi, let
g′i = gi

a 〈bi〉. Then get gi+1 by extending g′i to meet Di, where we do this in the minimal possible length.
(If there is more than one way to meet Di with minimal length, then pick arbitrarily.) And if i is limit

25The standard system of an ω-nonstandard model M is the collection of all reals coded in M , i.e. the set of all x ⊆ ω so
that there is y ∈ ωM so that y ∩ ω = x.

26This is why I require M to be an ω-model. If M is ω-nonstandard then there will be many different classes which satisfy
the definition of being a truth predicate. See chapter 3 for more detail.
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then gi =
⋃
j<i gj . For each i ∈ Ord, we have that gi ∈ M because 〈bi : i ∈ Ord〉 is amenable to M and gi

can be defined from an initial segment of this sequence. Finally, set G =
⋃
i∈Ord gi. Then G is generic over

(M,Def(M)), since it meets every Di. But hidden within G is this bad sequence 〈bi〉. It is well hidden, but
with the truth predicate we can snoop it out.

Suppose towards a contradiction that (M,X ) |= GBc contains both G and the truth predicate for M .
Then 〈Di : i ∈ Ord〉 ∈ X . We will see that 〈bi〉 ∈ X by inductively determining each bi. First, b0 is the first
bit of G. We then know the minimal length we have to extend 〈b0〉 to meet D0. We can use this to recover
g1 and then discover b1 as the first bit in G after g1. We then repeat this process, using 〈Di〉 to recover g2

then get b2, and so on. So we can define 〈bi〉 from G and the truth predicate, so 〈bi〉 ∈ X . But then (M,X )
cannot satisfy Replacement, a contradiction.

1.5 GBC-realizations of a countable model

In this section we look at the structure of the GBC-realizations for a fixed model. At the end of the section
I will discuss the extent to which the results generalize for theories stronger then GBC.

Definition 1.58. Let M be a model of first-order set theory and let T be a second-order set theory. Set
T -Re(M) = {X ⊆ P(M) : X is a T -realization for M}. Then T -Re(M) is a partial order under ⊆.

Of course, M may fail to be T -realizable and thus T -Re(M) may be empty. But theorem 1.41 implies that
if M is countable then GBC-Re(M) is not empty. If we move to the uncountable, however, then GBC-Re(M)
may be anemic. If M is rather classless then |GBC-Re(M)| ≤ 1; if such M has a definable global well-order
then it has a single GBC-realization—namely its definable classes—otherwise it will have no GBC-realization
at all.

But if M |= ZFC is countable then it will have continuum many GBC-realizations. To prove in theorem
1.41 that countable models of ZFC have GBC realizations we added a Cohen-generic subclass of Ord. But
there are continuum many different generic Cohen subclasses of OrdM for countable M . This gives continuum
many different GBC-realizations for M .

Proposition 1.59. Let M |= ZFC be countable. Then there are continuum many different subclasses of
OrdM which are Cohen-generic over (M,Def(M)).

Proof. Consider the full binary tree T = <ω2 of finite binary sequences. We will construct a family of
Cohen-generic subclasses of OrdM for each branch through T . This construction is done along T . Order,
in ordertype ω, the dense subclasses Di of Add(Ord, 1)M which are in Def(M). Start with p∅ = ∅. Assume
that we have already defined ps for s a node in T . Then, to get psai extend ps

ai to a condition in D`, where
` is the length of s. Then if B is a branch through T we have that CB =

⋃
s∈B ps is Cohen-generic over

(M,Def(M)), as it met every dense class. And if B 6= B′ are distinct branches this is because there is a
node s ∈ T so that sa0 ∈ B and sa1 ∈ B′. So CB 6= CB′ because they extend ps in incompatible ways.

An intriguing question is whether there is anything between these extremes of continuum many GBC-
realizations and ≤ 1 GBC-realization.

Question 1.60. Is there (necessarily uncountable) M |= ZFC so that |GBC-Re(M)| = 2? What about
|GBC-Re(M)| = n for finite n? What about |GBC-Re(M)| = ω? In general, what cardinals κ are the
cardinality of GBC-Re(M) for some M?

The rest of this section will be confined to looking at countable models of ZFC as there it can be shown
that GBC-Re(M) has a rich structure.

Let us begin with some basic properties.

Theorem 1.61. Let M |= ZFC be countable. Then GBC-Re(M) satisfies the following properties.

1. If {Xi : i ∈ I} ⊆ GBC-Re(M) has a lower bound in GBC-Re(M) it has a greatest lower bound.
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2. If {Xi : i ∈ I} ⊆ GBC-Re(M) has an upper bound in GBC-Re(M) it has a least upper bound.

3. If M does not have a definable global well-order, then there are pairs of elements of GBC-Re(M)
without a lower bound. On the other hand, if M does have a definable global well-order then any
{Xi : i ∈ I} ⊆ GBC-Re(M) has a lower bound.

4. There are pairs of elements of GBC-Re(M) without an upper bound.

5. If 〈Xi : i ∈ I〉 is an increasing chain then it has a supremum.

6. There are maximal elements of GBC-Re(M). That is, there is X ∈ GBC-Re(M) so that there is no
Y ∈ GBC-Re(M) with Y ) X .

Proof. (1) The infimum is Y =
⋂
i∈I Xi. We want to see that (M,Y) |= GBC. Extensionality is free, as is

Replacement since Y is contained inside a GBC-realization. To see that Y satisfies Global Choice, fix any Z
a lower bound for the Xi. Then Y ⊇ Z so the global well-order in Z is in Y. Finally, we want to see that Y
satisfies Elementary Comprehension. But each Xi is closed under first-order definability, so their intersection
must also be closed under first-order definability.

(2) The supremum is the intersection of all the upper bounds. It follows from (1) that this gives an
element of GBC-Re(M).

(3) Suppose M does not have a definable global well-order. Take C,D subclasses of OrdM which are
mutually Cohen-generic over (M,Def(M)). Then Def(M ;C) and Def(M ;D) are GBC-realizations for M .
But their intersection is Def(M), by mutual genericity, which does not have a global well-order.

For the other case, suppose M does have a definable global well-order. Then Def(M) is a lower bound
for a subset of GBC-Re(M).

(4) We will construct C,D Cohen-generic over (M,Def(M)) so that no GBC-realization for M can contain
both C and D. This will establish that Def(M ;C) and Def(M ;D) are elements of GBC-Re(M) without an
upper bound.

Fix B : OrdM → 2 so that {i : B(i) = 1} has ordertype ω and is cofinal in OrdM . Such B exists
because M is countable. But no GBC−-realization for M can contain this bad class B because B reveals
that OrdM has countable cofinality. We will construct C and D so that together they code B. This is a
construction in OrdM many steps, defining ci and di for i ∈ OrdM . Order the dense subclasses of Add(Ord, 1)
as 〈Di : i ∈ OrdM 〉.

• Set c0 = d0 = ∅.

• Given ci and di set c′i+1 = ci
a 〈0 . . . 0〉a 〈1, B(i)〉, where the sequence of 0’s has length chosen so

that ci
a 〈0 . . . 0〉 has the same length as di. Then get ci+1 by extending c′i+1 to meet Di. Next, let

d′i+1 = di
a 〈0 . . . 0〉a 〈1〉, where the sequence of 0’s has length chosen so that di

a 〈0 . . . 0〉 has the same
length as c′i+1. Then get di+1 by extending d′i+1 to meet Di.

• If i is limit then ci =
⋃
j<i cj and di =

⋃
j<i dj .

Finally, set C =
⋃
i ci and D =

⋃
i di. By construction C and D are Cohen-generic over M . Suppose

towards a contradiction that X is a GBC−-realization for M with C,D ∈ X . Let us see that B ∈ X , a
contradiction. Namely, X can inductively recover B(i), ci, and di from C and D. First, c0 = d0 = ∅. Now
given ci we find B(i) by looking at the bit in C after the first 1 after the block of 0s in C starting after the
end of ci. We also get di by using that block of 0s to tell us how far in D we need to go to get di. Next,
looking at the block of 0s in D starting after the end of di tells us how long ci was extended in C to get
ci+1. We then continue this process, getting B(i+ 1), di+1, ci+2, and so on.

(5) The supremum is Y =
⋃
i∈I Xi. We need to see that Y is a GBC-realization for M . We know for free

that (M,Y) satisfies Extensionality. It satisfies Global Choice because each Xi contains a global well-order.
To see that it satisfies Replacement, suppose F ∈ Y witnesses a failure of Class Replacement. But then
F ∈ Xi for some i so (M,Xi) fails to satisfy Class Replacement, a contradiction. To check Elementary
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Comprehension we want to see that Y is closed under first-order definability. Towards this fix Ā ∈ Y. Then
Ā ∈ Xi for some i. This uses that the Xi are linearly ordered by ⊆. So if B is definable from Ā then
B ∈ Xi ⊆ Y, as desired.

(6) Combine (5) and Zorn’s lemma.

Let me remark that (3) of theorem 1.61 gives us a criterion in terms of the theory of M for when
GBC-Re(M) has a least element.

Corollary 1.62. Let M |= ZFC be countable. Then, whether GBC-Re(M) has a least element is recognizable
from the theory of M .

Proof. We saw that GBC-Re(M) has a least element if and only if M has a definable global well order. This
happens if and only if M |= ∃x V = HOD({x}).

Theorem 1.61.(4) previously appeared as (a special case of) lemma 3.1 of [Mos76]. Mostowski more-
over embeds the full binary tree of height ω1 into GBC-Re(M) for countable M , thereby concluding that
|GBC-Re(M)| ≥ 2ω1 .

What other orders can be embedded into GBC-Re(M)? We will get to this question in time—see theorems
1.76 and 1.77. But first let us consider some local properties of GBC-Re(M). It will be useful to single out
those X ∈ GBC-Re(M) which are countable.

Definition 1.63. Let M |= ZFC be a countable model of set theory. Set

GBC-Re<ω1
(M) = {X ∈ GBC-Re(M) : X is countable}.

With this definition in hand, we can now see that what was proved in (4) of the previous theorem was
really the following.

Corollary 1.64. For any X ∈ GBC-Re<ω1
(M) there are Y,Z ⊇ X in GBC-Re<ω1

(M) so that Y and Z
lack an upper bound.

Proof. Carry out the same argument, but over (M,X ) instead of (M,Def(M)). Generics can be found
because X is countable.

Cohen forcing holds the key to establishing other local properties of GBC-Re(M).

Theorem 1.65. Every X ∈ GBC-Re<ω1
(M) has a dense extension. That is, there is Y ∈ GBC-Re<ω1

(M)
so that there is a dense linear order in GBC-Re<ω1

(M) between X and Y. Consequently, the real line with
its usual order embeds into GBC-Re(M) between X and Y.

Proof. Let C be generic over (M,X ) for the forcing to add a Cohen-generic subclass of Ord. Then Y = X [C]
is a GBC-realization for M containing both X and C. Now take X ⊆ OrdM in X which is unbounded. It
follows from the homogeneity of Cohen-forcing that

CX = {α : the αth element of X is in C}

is Cohen-generic. (If you think of C as an Ord-length binary sequence then CX is the bits which appear
in X, in order.) Clearly, CX ∈ Y. On the other hand, if OrdM \ X is unbounded then C 6∈ X [CX ]. The
theorem now follows from the fact that there is a dense linear order of subclasses of OrdM so that both they
and their complements are unbounded. Namely, fix your favorite bijection b between ω and the rationals.
For a rational q, put α = ω · α0 + n into Xq if and only if b(n) < q. Then each Xq and its complement is
unbounded and Xq ⊆ Xq′ if and only if q < q′.

Namely, let k be a positive integer and 0 ≤ n < 2k. Set X(k, n) to be those ordinals which are equivalent
to n modulo 2k. For example, X(0, 1) is the class of even ordinals and X(1, 1) is the class of odd ordinals.

For the consequently, let e be an embedding of the rationals into GBC-Re<ω1(M) between X and Y. For
r a real set Zr =

⋃
q<r e(q), which is a GBC-realization for M by theorem 1.61.(5). Then r 7→ Zr gives an

embedding of the real line into GBC-Re(M) between X and Y.
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We saw in theorem 1.61 that GBC-Re(M) has a least element if and only if M has a definable well-order.
This result can be improved.

Theorem 1.66. Let M be a countable model of ZFC and consider X ∈ GBC-Re<ω1(M). Then there is
Y ∈ GBC-Re<ω1

(M) so that:

• If M has a definable global well-order then the only lower bound of X and Y in GBC-Re(M) is Def(M).

• If M does not have a definable global well-order then X and Y have no lower bound in GBC-Re(M).

Proof. Let H be (M,X )-generic for Add(Ord, 1). Then Def(M ;H) ∈ GBC-Re<ω1(M), because meeting
every dense class in X implies meeting every dense class in Def(M). Set Y = Def(M ;H). Let us see that Y
is as desired.

Consider A ∈ X and assume that A ∈ Y = Def(M ;H). Then, there is some first-order formula ϕ, possibly
with set parameters and H as a class parameter but with no other class parameters so that (M,X [H]) |=
∀x x ∈ A ⇔ ϕ(x,H). By the forcing theorem there is some p ∈ H so that, in (M,X ), we have p 
 ∀x x ∈
Ǎ ⇔ ϕ(x, Ḣ). So for all x ∈ M , we have x ∈ A if and only if (M ;X ) |= “p 
 ϕ(x̌, Ḣ)”. But this formula
does not depend upon G, so the same is true in (M ; Def(M)). Therefore, A ∈ Def(M). So we have seen
that if A ∈ X ∩ Y then A ∈ Def(M), from which the conclusion of the theorem immediately follows.

Next we look at the opposite phenomenon from theorem 1.65. Namely, every X ∈ GBC-Re<ω1(M)
extends to some Y ∈ GBC-Re<ω1(M) with nothing in between them. To do so, I will make use of a variant
of Sacks forcing for adding new classes of ordinals.

Generalizing Sacks forcing to add generic classes of ordinals has been considered before. Kossak and
Schmerl [KS06] considered what they call perfect generics, an adaptation of Sacks forcing to models of
arithmetic. A set theoretic variant of their idea to add a subclass of Ord was considered by Hamkins, Linetsky,
and Reitz [HLR13]. In the arithmetic case, perfect generics are used to produce minimally undefinable
inductive sets over a model M of arithmetic, i.e. inductive G ⊆ M so that for A ∈ Def(M ;G) either
A ∈ Def(M) or G ∈ Def(M ;A). A similar construction works in set theory to produce minimal extensions
of countable models of GBC.

Theorem 1.67. Take X ∈ GBC-Re<ω1
(M). Then there is a GBC-realization Y ) X for M which is minimal

above X , in the sense that if Z ∈ GBC-Re<ω1
(M) with X ⊆ Z ⊆ Y then either Z = X or Z = Y.

Let me sketch the main idea before giving a proof. The desired Y will be Def(M ;X , G) where G is a
specially chosen subclass of OrdM . We need to ensure two things. First, we need that Def(M ;X , G) is a
GBC-realization for M , so we need to ensure that we satisfy the Separation and Replacement schemata with
G and parameters from X . Second, we need to ensure that every new class codes G, so that Y is minimal
above X .

To achieve the first of these we will define G to be the intersection of a certain ⊆-descending sequence
〈Pn : n ∈ ω〉 of Ord-height perfect binary trees. To ensure that G is a branch we will have that Pn only splits
above αn, where 〈αn : n ∈ ω〉 is a fixed sequence cofinal in OrdM . That adjoining G gives a GBC-realization
will be due to genericity properties of G. We can think of each of the Pn as a forcing notion. While G will
not be fully generic over any Pn, it will be increasingly generic over each one. This will suffice.

Definition 1.68. Let Q ⊆ P be Ord-height perfect binary trees. Say that Q has the Σn-branch genericity
property over P if every branch through Q (not necessarily in the model) is Σn-generic over P, meaning that
the branch meets every Σn-definable dense subclass of P.

We will need a refinement of the forcing theorem for partial generics. Let me state what we need here,
sans proof. Any Ord-height perfect binary tree P, considered as a forcing notion, is tame. So we have that the
forcing relation is definable. The refinement we need is that 
P restricted to the Σk-formulae is Σj definable
for some j > k. This is proved via the usual proof of the definability lemma, but with careful bookkeeping
of quantifiers. More generally, if we want 
P restricted to the Σ0

k-formulae in some class parameter P , then
this is Σ0

j definable from that same parameter.
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The other half of the forcing theorem is the truth lemma, which asserts that if G ⊆ P is generic then
(M,X )[G] |= ϕ if and only if there is p ∈ G so that p 
 ϕ. The refinement is that this works in a restricted
fashion for partial generics. That is, for each k there is j > k so that if G is Σk-generic then for any Σk-
formula ϕ we have (M,X )[G] |= ϕ if and only if there is p ∈ G so that p 
 ϕ. Again, this refinement comes
from considering the usual proof of the truth lemma, but paying close attention to the quantifiers involved.

We may assume that the j > k for both lemmata is the same, simply by taking the maximum of the two.
To have a name for this j, call it the Σk-genericity witness.

Lemma 1.69. Work with (M,X ) |= GBC. Suppose 〈Pn : n ∈ ω〉 is a descending sequence of Ord-height
perfect binary trees so that Pn+1 has the Σn-branch genericity property over Pn. Let G =

⋃⋂
n Pn. Then

(M,Def(M ;X , G)) |= GBC.

Proof. Suppose towards a contradiction that F ∈ Def(M ;X , G) witnesses a failure of Replacement. Then
F is defined from G and parameters from X via a Σn formula. Now let j > n be the Σn-genericity witness.
So there is some p ∈ G so that p 
Pj “F witnesses a failure of Replacement”. Now take H ∈ X which
is Σj-generic over Pj ; such exists because Σj-truth is definable. Carry out the definition of F but use H
instead of G. We get that F ∈ Def(M ;X , H) witnesses a failure of Replacement, because H is sufficiently
generic. But Def(M ;X , H) = X because H ∈ X . So (M,X ) is not a model of GBC, a contradiction.

Before seeing how to ensure that Y is minimal above X , let us see that we can always arrange such a
sequence 〈Pn〉 of perfect binary trees.

Lemma 1.70. Let (M,X ) |= GBC be countable. Then there is 〈Pn〉 of Ord-height perfect binary trees from
X so that

⋃⋂
n Pn is a class of ordinals and Pn+1 has the Σn-branch genericity property over Pn.

This sequence will not be (coded) in X , though each tree in the sequence will be in X .

Proof. Fix 〈αn : n ∈ ω〉 cofinal in OrdM . Start with P0 = <Ord2 the full binary tree. Assume we have already
found Pn ∈ X . We define Pn+1 by defining a certain embedding g : <Ord2 → Pn. Closing ran g downward
in Pn will give Pn+1. We define g by a set-like recursion of height Ord. Fix in advance a global well-order.
Let g(0) be the first node according to this well-order which has length ≥ αn. This will ensure that the
intersection of the Pn gives a branch. At limit stages, take unions. If we have already defined g(s), then let
t be the least, according to the global well-order, splitting node in Pn which extends g(s) and decides the
len s-th instance (according to the global well-order) of the universal Σn-formula. Then set g(sai) = tai.

It is clear that Pn+1 ∈ X , because we defined it from parameters from X . It is also clear that Pn+1 is a
perfect tree. It has the Σn-branch genericity property over Pn because any Σn-formula is decided by a long
enough node in Pn+1.

It remains to see how to ensure the minimality of the extension. This is encapsulated by the following
lemma, which is a set theoretic counterpart to a result from section 6.5 of [KS06].

Lemma 1.71 (Minimality lemma). Let ϕ(x) be a formula in the forcing language and P ∈ X be a perfect
subtree of the full binary tree. Then there is Q ⊆ P in X so that one of the two cases holds:

1. There is an ordinal α so that for all ordinals ξ we have that all p ∈ Q of length greater than α decide
ϕ(ξ̌) (in P) the same.

2. For every ordinal α there is β > α so that if p, q ∈ Q both have length β and p � α = q � α then there
is an ordinal ξ so that p and q decide ϕ(ξ) differently (in P).

Proof. Fix k so that ϕ is a Σk formula. Take P′ ⊆ P a k-deciding subtree for P. We may assume that there is
a function f : B→ P′ which embeds the full binary tree onto the splitting nodes of P′ and that f(s) decides
ϕ(len s). There are two cases. The first is that there is some s ∈ B so that for every t, t′ >B s if len t = len t′

then f(t) and f(t′) decide ϕ(ξ) the same for all ordinals ξ. In this case, set Q = P′ � f(s) and get the first
conclusion in the lemma.

The second case is that this does not happen for any s ∈ B. In this case, we can inductively define a
g : B→ P′ as follows:
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• Set g(0) = f(0).

• Set g(sa0) = p0 and g(sa1) = p1, where p0, p1 are least (according to a fixed global well-order) so
that len p0 = len p1 and there is an ordinal ξ so that p0 and p1 decide ϕ(ξ) differently. Such p0 and p1

always exist, as otherwise we would be in the previous case.

• At limit stages take unions.

Set Q = {p ∈ P′ : ∃s ∈ B p ≤P′ g(s)}. This yields the second conclusion in the lemma.

Observe that we used global choice in an essential manner here. There are possibly many choices for p0

and p1 in the successor stage of the construction of g. In order to guarantee that g ∈ X and hence that
Q ∈ X , we need to uniquely specify a choice.

Proof of theorem 1.67. Work with countable (M,X ) |= GBC. Fix a cofinal sequence 〈αn〉 of ordinals and
an enumeration 〈ϕn(x)〉 of formulae in the forcing language. We construct a descending sequence of perfect
trees

<Ord2 = Q0 ⊇ P0 ⊇ Q1 ⊇ P1 ⊇ · · · ⊇ Qn ⊇ Pn ⊇ · · ·

so that Pn has the Σn-branch genericity property over Qn and does not split below αn and Qn+1 ⊆ Pn is as
in the previous lemma for ϕn. Set G =

⋃
(
⋂
n Pn) and Y = Def(M ;X , G). Then Y ⊇ X is a GBC-realization

for M .
Now suppose Z is a GBC-realization for M with X ⊆ Z ⊆ Y. We want to see that either Z = X or

Z = Y. It is enough to see that if A ∈ Y then either G is definable from A and parameters in X or else
A ∈ X . Without loss of generality we may assume that A is a class of ordinals. Then it was defined by some
formula ϕn in our enumeration.

Consider Qn+1 ⊆ Pn. If the first case from the minimality lemma holds, then A ∈ X because ξ ∈ A if
and only if for every p ∈ Qn+1 the length of p being sufficiently long implies that p 
Pn ϕn(ξ). If the second
case of the previous lemma holds, then we can define G from A. In this case, p ∈

⋂
n Pn if and only if for

every ordinal α there is q >Qn+1 p of length greater than α so that q 
Pn ϕn(ξ) ⇔ ξ ∈ A for all ordinals ξ.
From a definition of

⋂
n Pn can easily be produced a definition for G.

As remarked earlier, Global Choice was used essentially in the proof of lemma 1.71. Proving this lemma
without Global Choice would yield a construction for minimal but not least GBC-realizations. Namely, start
with a countable M |= ZFC with no definable global well-order. Let X = Def(M). Then (M,X ) is a model
of GBC minus Global Choice. Applying the theorem to (M,X ) would yield a GBC-realization Y for M which
is minimal above X . But since any GBC-realization must contain X , this would give that Y is a minimal
GBC-realization for M .

Thus, the problem of constructing a minimal but not least GBC-realization can be reduced down to the
problem of proving the minimality lemma without using choice. A similar question can be asked for ordinary
Sacks forcing.

Question 1.72. Is choice needed to prove the minimality lemma for Sacks forcing? That is, is it consistent
that there are M |= ZF + ¬AC, s ⊆ ωM Sacks-generic over M , and A ∈M [s] so that M (M [A] (M [s]?

This technique can also be applied to study principal models of GBC.

Definition 1.73. Say that (M,X ) is a principal model if there is A ∈ X so that X = Def(M ;A). Let
GBC-RePr(M) denote the collection of principal GBC-realizations for M . Note that GBC-RePr(M) ⊆
GBC-Re(M) and ifM is countable then GBC-RePr(M) ⊆ GBC-Re<ω1

(M). Like GBC-Re(M) and GBC-Re<ω1
(M),

GBC-RePr(M) is ordered by ⊆.

Theorem 1.74 (S. Friedman, Kossak–Schmerl). For M countable, GBC-RePr(M) is dense in GBC-Re<ω1
(M).

That is, given any countable GBC-realization X for M there in Y ⊇ X which is a principal GBC-realization
for M .
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This is theorem 15 of [HLR13]. Hamkins, Linetsky, and Reitz attribute the result independently to Fried-
man, via private communication, and Kossak and Schmerl for the finite set theory (equivalently, arithmetic)
case. I will not give a full argument here, but let me sketch the proof.

Proof sketch. The argument is similar to the proof of theorem 1.67. We want to get a sequence

<Ord2 = Q0 ⊇ P0 ⊇ Q1 ⊇ P1 ⊇ · · · ⊇ Qn ⊇ Pn ⊇ · · ·

so that Qn+1 has the Σn-branch genericity property over Pn. Before, we used the minimality lemma to
produce Pn from Qn. Here we need a different lemma.

Lemma 1.75. Work over (M,X ) |= GBC. Let Q be an Ord-height perfect binary tree and A ∈ X be a class
of ordinals. Then, there is P ⊆ Q in X so that from Q and any branch through P we can define A.

Proof sketch. Using A we thin out P, keeping every other splitting node. This ensures that the tree we get
at the end is still perfect. Reaching the 2i-th splitting node along a branch, we either go left or right. We
go left if i ∈ A and go right if i 6∈ A. This gives Q. From P we know where the 2i-th splitting nodes along a
branch are. From a branch through Q we know whether we went left or right to define Q and thus whether
i ∈ A. So we can define A.

To get theorem 1.74 we line up the classes in X in ordertype ω—externally to the model. Then, to define
Pn from Qn we apply the lemma to code the n-th class. At the end, the G we get will allow us to define
every set in X , and thus Def(M ;X , G) = Def(M ;G) ∈ GBC-RePr(M).

We saw above that the rationals embed into GBC-Re(M). Indeed, given any X ∈ GBC-Re<ω1
(M) we

can embed rationals into GBC-Re(M) above X . This can be generalized to any countable partial order.

Theorem 1.76. Every countable partial order embeds into GBC-Re(M), for countable M |= ZFC. More
generally, for every finite partial order P and every X ∈ GBC-Re<ω1(M) there is an embedding e : P →
GBC-Re(M) which maps P above X—that is, e(p) ⊇ X for all p ∈ P .

This theorem is similar to the result that every countable partial order embeds into the Turing-degrees.
See below for further discussion.

Proof. Let us first see the special case of an atomic boolean algebra. Let (B,<B) be a countable atomic
boolean algebra, with atoms b0, b1, . . .. Let C0, C1, . . . be mutually (M,Def(M,X ))-generic Cohen subclasses
of Ord. Then the map bi 7→ Def(M ;X , Ci) induces an embedding of B into GBC-Re(M); given arbitrary
b ∈ B map b to Def(M ;X , Ci : bi ≤B b).

So we are done once we see that every countable partial order embeds into a countable atomic boolean
algebra. Let (P,<P ) be a countable partial order. The desired boolean algebra (B,<B) will be generated
by countably many atoms, with an atom a(p) associated to each p ∈ P . For the embedding e, map p to the
unique b ∈ B so that a(q) ≤B b if and only if q ≤P p. Then q ≤P p if and only if e(q) ≤B e(p).

The embedding from this argument destroys a lot of information about the partial order. It may be that
p, q ∈ P have no upper bound. But their image under the embedding will have an upper bound, as we first
embed P into a boolean algebra—where all pairs of elements have an upper bound—and then embed that
boolean algebra into GBC-Re(M). But recall from corollary 1.64 that there are X ,Y ∈ GBC-Re(M) without
an upper bound.

Can we do better and get embeddings that preserve the non-existence of upper bounds?

Theorem 1.77 (Mostowski [Mos76]). Let (M,X ) |= GBc be countable and F be a finite family of finite sets,
closed under subset.27 Then there are (M,X )-generic Cohen subclasses Ci of Ord for each i ∈

⋃
F and an

embedding e from F to GBC-Re(M) satisfying the following.

27Such F are precisely those orders which are initial segments of a finite boolean algebra of sets.
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1. If f ∈ F then the Ci for i ∈ f are mutually generic; and

2. If f ⊆
⋃
F is not in F then the Ci for i ∈ f do not amalgamate: there is no GBC-realization Y for M

which contains Ci for all i ∈ f .

Before giving the proof let me extract a corollary.

Corollary 1.78. Let M |= ZFC be countable.

1. Suppose M has a definable global well-order and let P be a finite partial order with a least element
0P . Then there is an embedding e of P into GBC-Re(M) so that e(0) = Def(M) and e preserves the
existence/nonexistence of upper bounds and nonzero lower bounds.

2. Suppose that M does not have a definable global well-order and let P be a finite partial order with-
out a least element. Then there is an embedding e of P into GBC-Re(M) which preserves the exis-
tence/nonexistence of upper bounds and lower bounds.

3. Let X ∈ GBC-Re<ω1
(M) and let P be a finite partial order with a least element 0P Then there is an

embedding e of P into GBC-Re(M) above X so that e(0) = X and e preserves existence/nonexistence
of upper bounds and nonzero lower bounds. That is, e(p) ⊇ X for all p ∈ P and p and p′ have a
nonzero lower bound if and only if e(p) and e(p′) have X as their greatest lower bound.

Proof. In each case, we will first embed P into a finite family F of finite sets closed under subset, in such a
way that the embedding preserves the existence/non-existence of upper bounds and nonzero lower bounds.
We will apply theorem 1.77 using F . For (1) and (2) we will work over (M,Def(M)) while for (3) we will
work over (M,X ). The preservation of upper bounds will be ensured by mutual genericity, which will also
ensure the condition about lower bounds. Finally, the preservation of nonexistence of upper bounds follows
from non-amalgamability.

It remains to see the embedding of P into F . First embed (P,<P ) into a boolean algebra of sets B by the
following e: the boolean algebra is generated by an atom a(p) for each p ∈ P and we map p to {a(q) : q ≤ p}.
Let F be the downward closure of e′′P in B. Then e(p) and e(q) have an upper bound in F if and only if
there is r ≥P p, q. And two sets f, g ∈ F have a nonzero lower bound if and only if f ∩ g 6= ∅ which happens
if and only if {i} ⊆ f ∩ g for some i ∈

⋃
F . So if f = e(p) and g = e(q) then e(p) and e(q) have a nonzero

lower bound if and only if they both contain a(r) for some r ∈ P if and only if r ≤ p and r ≤ q. Thus, we
have seen that e is as desired.

Proof of theorem 1.77. Without loss of generality
⋃
F = n ∈ ω. And if n ∈ F then the result is trivial—

merely add n mutually-generic Cohen subclasses of Ord. So assume we are the case where n 6∈ F .
As in the non-amalgamability argument for theorem 1.61.(4), fix a bad sequence B : OrdM → 2 which

witnesses that OrdM is countable. We want to construct the Cohen generics Ci for i ∈ n so that for f ⊆ n
the Cohen generics {Ci : i ∈ f} code B if and only if f 6∈ F . We construct the Ci in OrdM many stages.
Externally to the model, fix an OrdM -sequence of the dense subclasses in X of Add(Ord, |f |) for some f ∈ F .
We can arrange this so that each stage α has a corresponding fα ∈ F and for each f ∈ F each dense subclass
of Add(Ord, |f |) appears at some stage α with f = fα.

Start with c0i = ∅ for all i ∈ f . At limit stages, we will simply take unions. All the work is in the successor
stage. Suppose we have already built cαi for all i ∈ f . Let D ⊆ Add(Ord, |fα|) be the dense class for stage
α. We can extend cαi to dαi for i ∈ f so that

∏
i∈f d

α
i meets D. By padding out with 0s if necessary, we

may assume without loss that the dαi ’s all have the same length, call it γ. Now, for i 6∈ f extend cαi to dαi of
length γ by adding 0s everywhere new. Finally, set cα+1

i = dαi
a 〈1, B(α)〉.

Then Ci =
⋃
α∈OrdM cαi is Cohen-generic. And it is clear from the construction that {Ci : i ∈ f} is a

family of mutually-generic Cohen subclasses of Ord for finF . It remains to see that if f 6∈ F then {Ci : i ∈ f}
codes B. This is because, {Ci : i ∈ f} can recognize the coding points. They occur just after the rows of all
1s. That is, B(α) = Ci(ξα + 1) (any i ∈ f) where ξα is the αth ξ so that Ci(ξ) = 1 for all i ∈ f .
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Many questions remain open about the structure of GBC-Re(M). Let me mention one open-ended
question.

Question 1.79. What can be said about the theory of the structure (GBC-Re(M),⊆)? What if we add
in predicates for collection of the the countable GBC-realizations or the collection of the principal GBC-
realizations?

This project of studying the order structure of GBC-Re(M) has similarities to two extant projects in
mathematical logic. Let me briefly mention them and the connections.

The first and older of the two is the study of the Turing degrees under the order of Turing-reducibility.
The structure of this partial order has been well studied and many results about the Turing degrees have
counterparts in the context of GBC-Re(M). For instance, it is known that every countable poset embeds
into the Turing degrees.

The reader should be warned, however, that there are differences between the two. Let me illustrate this
with the exact pair theorem as an example.

Theorem 1.80 (Spector [Spe56]). Let 〈dn : n ∈ ω〉 be a sequence of Turing degrees so that dn <T dn+1 for
all n. Then there are Turing degrees a and b which are above each dn but if c <T a,b then c <T dn for
some n.

The analogous result is not true for GBC-realizations for a fixed countable M |= ZFC. Let 〈Xn : n ∈ ω〉
be an increasing ⊆-chain of GBC-realizations for M and let Y,Z ∈ GBC-Re(M) be upper bounds for the
sequence. Then

⋃
Xn ∈ GBC-Re(M) is below both Y and Z but above every Xn. The dis-analogy is because

GBC-realizations do not have to be generated by a single class. This suggests that the correct analogy is
between GBC-realizations and Turing ideals. But even then, the analogy is not perfect. For example, Turing
ideals do not have a non-amalgamability phenomenon, as any collection of Turing ideals are all contained in
the Turing ideal P(ω).

The second connection is to the generic multiverse. Given a countable transitive28 model M of set theory
the generic multiverse of M is the smallest collection of countable transitive models containing M which is
closed under (set) forcing extensions and (set) grounds.29 It follows from work by Usuba [Usu17] that the
generic multiverse of M can be equivalently defined as the collection of all forcing extensions of grounds of
M .

Let M be the generic multiverse of M . Then M is partially ordered under inclusion and we can ask
about the order-theoretic properties of M. Many of the arguments about Cohen-generic subclasses of Ord
also apply for Cohen-generic subsets of, say, ω which yields similar results for the generic multiverse as it
does for the GBC-realizations. See e.g. [Ham16].

Let me conclude by considering to what extent these results generalize from GBC to other theories.
First, we consider what happens if we drop powerset. As mentioned in section 1.2, forcing with Add(Ord, 1)

may add sets for some models of ZFC−. So most of the techniques of this section fail badly for those models.
However, if M |= ZFC− is such that forcing with Add(Ord, 1) does not add sets, then the same arguments
go through and we get all the same results for GBC−-Re(M).

Next consider stronger theories. First, let us see that T -RePr(M) may be empty.

Proposition 1.81. Let T ⊇ GBC− prove that for every class A the first-order truth predicate relative to A
exists. Then T has no principal models.

Proof. Suppose otherwise that (M,X ) |= T has that every class is definable from A ∈ X . But then the truth
predicate relative to A is definable from A, contradicting Tarski’s theorem on the undefinability of truth.

In particular, there are no principal models of theories extending GBC− + ETR, or even GBC− + ETRω.
So for most theories T of interest, T -RePr(M) is trivial. But we can say something about T -Re(M) and
T -Re<ω1(M).

28One does not need the assumption of transitivity, but let me leave it in to simplify the discussion.
29A ground of M is a submodel W so that M = W [g] for some g generic for some forcing notion in W .
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The main tool used in this section was Cohen-generic subclasses of Ord. We carefully constructed generics
to have certain properties with regard to amalgamability/non-amalgamability, and thereby concluded some-
thing about the structure of GBC-Re(M). Some of these results generalize to T -Re(M) and T -Re<ω1

(M),
for T which is preserved by Cohen-forcing.

Theorem 1.82. Let M |= ZFC be countable and let T be a second-order set theory which is preserved by
forcing with Add(Ord, 1) over M .30 Suppose M is T -realizable. Then T -Re(M) satisfies the following.

1. For any X ∈ T -Re<ω1
(M) there are Y,Z ⊇ X in T -Re<ω1

(M) so that Y and Z lack an upper bound.

2. Every X ∈ T -Re<ω1
(M) has a dense extension. That is, there is Y ∈ T -Re<ω1

(M)) so that there is a
dense linear order in T -Re(M) between X and Y.

3. For every countable partial order P and every X ∈ T -Re<ω1(M) there is an embedding e : P →
T -Re(M) which maps P above X .

4. Every finite partial order embeds into T -Re(M) in such a way as to preserve the existence/nonexistence
of upper bounds and nonzero lower bounds.

Proof sketch. The same arguments as in the T = GBC case.

However, not all arguments generalize. In particular, the argument for when GBC-Re(M) has a least
element will not work for theories stronger than GBC. Indeed, in chapter 4 we will see that the result is false
for sufficiently strong theories. If T ⊇ GBC+ Π1

1-CA then T -Re(M) never has a least element, for countable
M .

But we are not yet ready to prove this. First we need to know more about the structure of models of
strong second-order set theories, which we turn to in chapter 2.

30For example, T could be KM, KMCC, GBC + Π1
k-CA, or GBC + Π1

k-CA + Σ1
k-CC.



Chapter 2

Many constructions: unrollings,
cutting offs, and second-order L

Second-order logic is set theory in disguise.

W.V.O. Quine

This chapter contains an exposition of several constructions relating to models of strong second-order
set theories. These constructions are not new, dating at least as far back as work by Marek and Mostowski
in the 1970s [Mar73; MM75]. The ultimate origin of the constructions is not clear to me. Indeed, in the
introduction to [Mar73] Marek claims that Jensen, Mostowski, Solovay, and Tharp all independently proved
that KM is consistent with V = L, which will follow from the third construction considered in this chapter,
viz. the second-order constructible universe.1 More recently, Antos and S. Friedman [AF] independently
rediscovered these constructions a few years ago.

Previously these constructions have been done in the context of KM or KMCC. In this chapter I analyze
them more finely, generalizing their application from models of KM or KMCC to models of weaker theories.

The first construction I call the unrolling construction. This is essentially the same construction as the
one used to code hereditarily countable sets as reals, which has seen wide use within set theory. The point is
that the same idea works for sets which are not hereditarily countable. We can code ‘sets’ of rank > Ord as
proper classes. Then, given that our universe satisfies a strong enough second-order set theory these codes
can be unrolled to produce a model of first-order set theory. The theory of this unrolled model will depend
upon the theory of the ground universe.

The reader who is familiar with reverse mathematics may know that a similar construction is used for
theories of second-order arithmetic. This yields that they are bi-interpretable with certain (first-order) set
theories. See [Sim09, chapter VII] for a thorough exposition.

The second construction is the cutting off construction. This construction starts with a model of ZFC−

(or weaker theory) with a largest cardinal κ with κ regular and Hκ |= ZFC−. We then get a second-order
model by considering (Hκ,P(Hκ)) in this model, where P(Hκ) is necessarily a (definable) proper class in the
model. This will yield a model of GBC−, with more strength coming from a stronger theory in the ground
model. If κ is moreover inaccessible we will get a model of GBC, or more.

The cutting off construction is exactly the inverse of the unrolling construction. Starting with (M,X ) a
model of a sufficiently strong second-order set theory, the cutting off of the unrolling of (M,X ) is isomorphic
to (M,X ). In the other direction, start with N a model of a strong enough fragment of ZFC− with a largest
cardinal κ with κ regular and HN

κ |= ZFC−. Then the unrolling of the cutting off of N is isomorphic to N .

1Marek does not mention how they proved the result, but it seems likely that it was via a version of this construction.

31
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Together, these two constructions yield that strong enough second-order set theories are bi-interpretable
with certain first-order set theories. I summarize these bi-interpretability results below. First, however, we
will need names for the first-order set theories we get from unrolling.

Definition 2.1. The following are the first-order set theories theories which are satisfied by the unrolled
models arising from a model of second-order set theory. Each includes the basic axioms of set theory—
namely Extensionality, Pairing, Union, Foundation, Choice, and Infinity—and the assertion that there is a
largest cardinal κ.

• ZFC−I consists of the basic axioms plus Separation, Collection, and the assertion that κ is inaccessible.
To be clear, since this theory does not include Powerset, by “κ is inaccessible” is meant that κ is regular
and every set in Vκ has a powerset which is also in Vκ. In particular, ZFC−I proves that Vκ = Hκ is a
model of ZFC.

• ZFC−R consists of the basic axioms plus Separation, Collection, the assertion that κ is regular, and the
assertion that Hκ exists. In particular, ZFC−R proves that Hκ is a model of ZFC−.2

• wZFC−I consists of the basic axioms plus Separation and the assertion that κ is inaccessible. In partic-
ular, wZFC−I proves that Vκ = Hκ is a model of ZFC.

• wZFC−R consists of the basic axioms plus Separation, the assertion that κ is regular, and the assertion
that Hκ exists. In particular, wZFC−R proves that Hκ is a model of ZFC−.

Let k < ω.

• ZFC−I (k) consists of the basic axioms plus Σk-Separation, Σk-Collection, and the assertion that κ is
inaccessible. In particular, ZFC−I (k) proves that Vκ = Hκ is a model of ZFC.

• ZFC−R(k) consists of the basic axioms plus Σk-Separation, Σk-Collection, the assertion that κ is regular,
and the assertion that Hκ exists. In particular, ZFC−R(k) proves that Hκ is a model of ZFC−.

• wZFC−I (k) consists of the basic axioms plus Σk-Separation and the assertion that κ is inaccessible. In
particular, wZFC−I (k) proves that Vκ = Hκ satisfies every axiom of ZFC.

• wZFC−R(k) consists of the basic axioms plus Σk-Separation, the assertion that κ is regular, and the
assertion that Hκ exists. In particular, wZFC−R(k) proves that Hκ satisfies every axiom of ZFC−.

Let me explain the mnemonic behind the names of these theories for the benefit of the reader, to whom I
apologize for giving eight theories to remember. The subscripts tell you what is being asserted about κ, the
largest cardinal. ‘I’ reminds you that κ is inaccessible while ‘R’ tells you κ is merely regular. The w in front
stands for weak, wimpy, and why would you ever want to work with a theory which does not have even a
fragment of Collection?3,4 The parenthetical k tells us what fragment of Separation and Collection—or just
Separation in case w is in front—is in the theory.

Theorem 2.2. The following pairs of theories are bi-interpretable. Below, k ≥ 1.

• (Marek [Mar73]) KMCC and ZFC−I .

• KMCC− and ZFC−R .

• KM and wZFC−I + Σ0-Transfinite Recursion.5

2ZFC−R has natural models, for instance Hω2 . In general, if κ is regular then Hκ+ |= ZFC−R .
3For an extensive case study in why one would want Collection, see [Mat01].
4So under this naming system wZFC, although not used here, would be Zermelo set theory plus Foundation and Choice.

Unfortunately the natural name for this theory, ZFC, is already used to refer to Zermelo set theory plus Foundation, Choice,
and Collection.

5Σ0-Transfinite Recursion, which means what you think it means, will be formally defined in subsection 2.1.2.
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• KM− and wZFC−R + Σ0-Transfinite Recursion.

• GBC + Π1
k-CA + Σ1

k-CC and ZFC−I (k).

• GBC− + Π1
k-CA + Σ1

k-CC and ZFC−R(k).

• GBC + Π1
k-CA and wZFC−I (k) + Σ0-Transfinite Recursion.

• GBC− + Π1
k-CA and wZFC−R(k) + Σ0-Transfinite Recursion.

• GBC + ETR and wZFC−I (0) + Σ0-Transfinite Recursion.

• GBC− + ETR and wZFC−R(0) + Σ0-Transfinite Recursion.

The third construction I look at in this chapter is the construction of Gödel’s constructible universe
but extended from the sets to the classes. Given a class well-order Γ we can define LΓ and then consider
the definable hyperclass L consisting of all classes which appear in some LΓ. We will consider also the
construction of L relative to parameters. The main use to which we will put this construction is in showing
how to get models satisfying (a fragment of) Class Collection. The classical result here is that if we start
with (M,X ) a model of KM then the L we build gives a model of KMCC [Mar73]. That is, any model
of KM contains an Ord-submodel of KMCC, and it is straightforward to tweak the construction to give a
V -submodel. I will generalize this result from models of KM to models of GBC + Π1

k-CA. This gives the
following result.

Theorem 2.3. Let (M,X ) |= GBC− + Π1
k-CA for 1 ≤ k ≤ ω and suppose N ∈ X is an inner model (of

ZFC−) of M . Then there is Y ⊆ X a definable hyperclass so that (N,Y) |= GBC− + Π1
k-CA + Σ1

k-CC. In
particular, if N = M , this implies that every model of GBC− + Π1

k-CA contains a second-order definable
V -submodel of GBC + Π1

k-CA + Σ1
k-CC.

Finally, I will end this chapter with an application of these constructions. Marek and Mostowski showed
[MM75] that the shortest height of a transitive model of KM is less than the shortest height of a β-model of
KM. Moreover, if the former ordinal is τω and the latter is βω then Lβω |= τω is countable. I will generalize
this result to GBC + Π1

n-CA, showing that τn—the least height of a transitive model of GBC + Π1
n-CA—is

less than βn—the least height of a beta model of GBC + Π1
n-CA. Moreover, Lβn |= τn is countable.

The results in this chapter will form the bedrock for much of chapter 3 and chapter 4.

2.1 The unrolling construction

The structure of this section is as follows. We work throughout in a fixed model (M,X ) of some second-
order set theory. I will first lay out the basic definitions for what will be the unrolling of (M,X ). I will then
investigate what theory is satisfied by the unrolled structure. This will be set up as a series of propositions,
showing that if the ground model satisfies such and such then the unrolled model will satisfy so and so. At
the end, these propositions will yield one half of the bi-interpretability theorem above. I will summarize the
results before moving on to the next section, about the cutting off construction.

In reading the following the reader would do well to keep in mind what she knows about coding hereditarily
countable sets as reals.

Definition 2.4 (Over GBc−). Call a class binary relation A a membership code if A is the relation for a
well-founded, extensional directed graph with a top element. Let tA denote the top element of A. For any
x ∈ dom(A), let A ↓ x = {(a, b) ∈ A : a, b ≤A x}, where ≤A is the reflexive transitive closure of A, be A
restricted below the node x.

To suggest the graph theoretic perspective, I will sometimes use (A as a synonym for A. If the context
is clear, I will just write (. As a particular example, to express that x is an immediate predecessor of the
top element of A I will write x( tA rather than x A tA.

Let eltsA = {x ∈ domA : x ( tA} denote the penultimate level of A. In the unrolled structure, for
x ∈ eltsA we have A ↓ x is a membership code which represents an element of the set represented by A.
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na

n2

n1

n0

Figure 2.1: A membership code representing the set a = {0, 2}.

Note that this definition is first-order; it does not require any quantification over classes to check whether
A is a membership code. Thus, if X and Y are GBc−-realizations for the same M |= ZFC− with A ∈ X ∩ Y
then X and Y agree on whether A is a membership code.

For insight into the definition, consider the following definition.

Definition 2.5. Let x be a set. The canonical membership code for x is Ex = ∈ � TC({x}(. If X is a class
then the canonical membership code for x is EX = ∈ � TC({x})∪ {(x, ?) : x ∈ X} where ? is a new element.

Once we have defined the unrolling it will be immediate that the canonical membership code for a set
(respectively class) represents that set (respectively class) in the unrolling.

Unlike with the coding of hereditarily countable sets as reals, many membership codes represent virtual
objects, ‘sets’ which are too high in rank to be a class in the ground universe. For example, any order of
ordertype Ord + Ord + 1 is a membership code representing an ‘ordinal’ of ordertype Ord + Ord. But of
course there is no literal such ordinal in the ground universe.

Because membership codes can be high in rank, Mostowski’s collapse lemma does not apply to them.
Indeed, it is precisely those membership codes which are not isomorphic to the restriction of ∈ to some
class that are of interest here. Lacking a way to canonically choose membership codes, we work with all
membership codes and will quotient by isomorphism to produce the first-order structure.

Let us check some basic properties about isomorphisms of membership codes. The reader should note
that these facts require only a weak background theory to prove. As such, the unrolling construction can be
carried out over a model of a rather weak theory to produce some sort of structure. But it will take some
strength in order for this unrolled structure to satisfy an appreciable set theory.

First, isomorphisms for membership codes are unique. This is analogous to the rigidity of transitive sets,
but applied to membership codes rather than literal sets.

Proposition 2.6 (Over GBc−). Let A and B be membership codes. If π, σ : A ∼= B then π = σ.

Proof. By Elementary Comprehension, the class X = {a ∈ domA : π(a) 6= σ(a)} exists. Suppose towards a
contradiction that X is nonempty. Then, we can pick a minimal x ∈ X, as this is expressible via a first-order
property. By minimality, y (A x implies π(y) = σ(y). But because π and σ are isomorphisms and A and
B are extensional, π(x) is determined by {π(y) : y (A x} and σ(x) is determined by {σ(y) : y (A x}. So
π(x) = σ(x), contradicting the choice of x. So X is nonempty and thus π = σ.

Next, nodes in a membership code are determined by the isomorphism type of their class of predecessors.
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Proposition 2.7 (Over GBc−). Let A be a membership code and x, y ∈ domA. If A ↓ x ∼= A ↓ y then
x = y.

Proof. Let σ : A ↓ x ∼= A ↓ y. We want to see that σ is the identity. Set X = {a <A x : σ(a) 6= a}. Suppose
towards a contradiction that X is nonempty. Then, pick a ∈ X minimal. We have that σ(b) = b for all
b(A a so it must be that σ(a) = a. This contradicts the choice of a, so it must be that X is nonempty and
σ is the identity.

Third, the uniqueness of isomorphism generalizes in an appropriate way to certain partial isomorphisms.

Definition 2.8. Let A and B be membership codes. A partial function π
... A → B is an initial partial

isomorphism if its domain is downward-closed in A,6 its range is downward closed in B, and for all a, a′ ∈
domπ we have a(A a

′ if and only if π(a)(B π(a′).

Proposition 2.9 (Over GBc−). Let π, σ
... A → B be initial partial isomorphisms. Then π and σ agree on

the intersection of their domains.

Proof. Let C = domπ ∩ domσ. Then C is nonempty, as it must contain the least element of A. Now
consider X = {x ∈ C : π(x) 6= σ(x)}. As before if X is nonempty then it has a minimal element x, but
then by the properties of isomorphism for membership codes it must be that π(x) = σ(x), contradicting the
non-emptiness of X.

Observe that there are always initial partial isomorphisms between membership codes. In particular, the
partial map sending the least element of A to the least element of B is an initial partial isomorphism.

If our ground universe has a stronger theory then we can prove that there is a maximum initial partial
isomorphism between membership codes.

Lemma 2.10 (Over GBc− + ETR). Let A and B be membership codes. Then there is a maximum initial
partial isomorphism π between A and B. That is, if σ

...A→ B is any initial partial isomorphism then σ ⊆ π.

Proof. This maximum initial partial isomorphism π is constructed via an elementary transfinite recursion
on A. Namely, π is constructed via the transfinite recursion to construct an isomorphism between A and B,
except that we stop constructing higher when we reach a local failure of isomorphism. Formally, π is defined
via the following recursive requirement:

• π(a) is the unique b ∈ B so that for all a′ <A a we have π(a′)(B b if and only if a′ (A a, if such b
exists and π(a′) is defined for all a′(A a; and

• π(a) is undefined, otherwise.

Elementary Transfinite Recursion says that this recursion has a solution π. Manifestly π is an initial partial
isomorphism. Let us check that π is the maximum initial partial isomorphism. Take σ

... A → B an initial
partial isomorphism. Then σ and π agree on their domain, by proposition 2.9. So the recursion to construct
π will work on all of domσ and restricted to domσ will give σ. So σ ⊆ π.

Let me remark on this proof. One might attempt to more easily prove the existence of maximum
initial partial isomorphisms between membership codes by considering the hyperclass of all initial partial
isomorphisms and then taking the union of all of them. The issue with this argument is that it makes a
hidden appeal to Π1

1-Comprehension: we wish to define π by saying that π(a) is defined if there exists some
initial partial isomorphism σ

... A → B with a ∈ domσ and that then π(a) = σ(a). This is a Σ1
1 assertion.7

The more convoluted argument is preferred because it works from a weaker base theory.
Isomorphism will become equality in the unrolled structure. We also must say what will become the

membership relation.

6That is, if a ∈ domπ and a′ ( a then a′ ∈ domπ
7Recall that Π1

1-Comprehension is equivalent to Σ1
1-Comprehension.
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Definition 2.11 (Over GBc−). Given membership codes A and B say that A ε B if there is a (B tB so
that A ∼= B ↓ a.

In particular, if x(A tA then (A ↓ x) ε A.

Proposition 2.12 (Over GBc−). Isomorphism of membership codes is a congruence with respect to ε. That
is, if A and B are membership codes so that A ε B, A ∼= A′, and B ∼= B′, then A′ ε B′.

Proof. Let e : A ↪→ B embed A onto B ↓ a for some a (B tB . Let π : A′ ∼= A and σ : B ∼= B′. Then
σ ◦ e ◦ π : A′ ↪→ B embeds A onto B′ ↓ a′ for some a′(B′ tB′ .

The remainder of this section is dedicated to working out just what the theory of the ground universe
implies about the theory of the unrolling.

Hereon, let U denote the hyperclass of all membership codes and let U = (U/∼=, ε) denote the unrolled
structure. Note that U is a definable hyperclass, via a first-order formula.

Theorem 2.13 (Over GBc− + ETR). The unrolled structure U satisfies Extensionality.

Proof. Fix membership codes A and B. It needs to be shown that A ∼= B if and only if ∀C C ε A⇔ C ε B.
The forward direction of the implication is immediate. It is the other direction which requires work.

Suppose that for any membership code C we have C ε A if and only if C ε B. In particular, this is true
for C of the form A ↓ a for a(A tA or the form B ↓ b for b(B tB . For a(A tA let πa be the embedding
which maps A ↓ a onto B ↓ b for some b. And in the other direction, for b (B tB let σb be the initial
partial isomorphism which maps B ↓ b onto A ↓ a for some a(A tA. Proposition 2.7 gives that the choice
of b is unique and thus πa is well-defined, and similarly for σb. Notice, however, that in the absence of
Π1

1-Comprehension we have no way to uniformly refer to the πa and the σb.
By lemma 2.10 let π be the maximum initial partial isomorphism from A to B. First, note that domπ

includes all a(A tA. This is because π ⊇ πa for a(A tA, by maximality. Notice also that B ↓ b ⊆ ranπ
for all b(B tB because σ−1

b is an initial partial isomorphism from A to B which maps onto B ↓ b. But then
domπ must also include tA and ranπ must include tB as once we have an initial partial isomorphism defined
everywhere but the top elements it is obvious how to extend: send tA to tB . So domπ = A and ranπ = B,
so π is a full isomorphism.

The unrolled structure satisfies other basic axioms of set theory.

Proposition 2.14 (Over GBc− + ETR). The unrolled structure U satisfies Union, Pairing, Infinity, and
Foundation.

Proof. (Union) Given a membership code X we need to produce a membership code which represents
⋃
X =

{Z : ∃Y Z ε Y ε X}. We define such a Y by cutting out the penultimate level of X:

Y = (X \ {(x, tX) : x( tX}) ∪ {(x, tX) : ∃x′ x( x′( tX}.

This can be constructed by an instance of Comprehension and is easily verified to represent
⋃
X. See figure

2.2.
(Pairing) Let A and B be membership codes. By lemma 2.10 find π

...A→ B the maximum initial partial
isomorphism from A to B. Now let

P = A \ (A � domπ)

∪ {(π(a), a′) : (a, a′) ∈ A and a ∈ domπ and a′ 6∈ domπ}
∪B
∪ {(t′A, p), (tB , p)},

where p is a new point and t′A = tA if tA 6∈ domπ and t′A = π(tA) otherwise. It is easy to see that P is a
membership code which represents the unordered pair consisting of A and B.
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nX

nY0
nY1

nY2

nZ0
nZ1

...
...

...

n∪X

nY2

nZ0
nZ1

...
...

...

Figure 2.2: To construct a membership code for
⋃
X we remove all edges ending at the top node and add

edges (nZ , tX) for all nZ ( nY ( tX .

(Infinity) There is a membership code for ω. It is straightforward to check that it represents an inductive
set in U.

(Foundation) At bottom, Foundation holds in U because membership codes are well-founded.
More formally, suppose towards a contradiction that Foundation fails in U. That is, in the ground

universe there is a membership code A (for a nonempty set) so that for every B ε A there is C such that
C ε A and C ε B. In particular, this holds for B of the form A ↓ b for b(A tA. Therefore, we get that for
all b(A tA there is c(A tA so that c(A tb. But then eltsA has no minimal element, contradicting that
A is well-founded.

We also get that the unrolled structure satisfies Choice, due to having Global Choice in the ground
universe.

Proposition 2.15 (Over GBC− + ETR). The unrolled structure U satisfies Choice, in the guise of the
well-ordering theorem.8

Proof. Fix a membership code A. Appealing to Global Choice we may without loss of generality assume
that domA ⊆ Ord. We want to find a membership code W which codes a well-order of A. We do this by
modifying A as follows. First, throw out tA and any edges pointing to tA to get A′. While A′ is in general
not a membership code we will modify it to get the desired W . For each x, y ∈ eltsA with x < y (under the
ordering from the ordinals) we will add the following nodes to A′: {x}, {x, y} and {{x}, {x, y}}. We also add
edges to A′ in the obvious manner. That is, we add edges from x to {x} and {x, y}, from y to {x, y}, from
{x} to {{x}, {x, y}}, and from {x, y} to {{x}, {x, y}}. Finally, add a new node which will be tW and add
edges from each of the {{x, }, {x, y}} nodes to tW . (See figure 2.3 for a picture of W .) Then W represents
a well-order of A of ordertype ≤ Ord.

The astute reader will note that Elementary Transfinite Recursion was used only so far in two places,
namely to get Extensionality and Pairing. In both cases it was used via the lemma that there are maximum
initial partial isomorphisms between membership codes. One might wonder whether this use of Elemen-
tary Transfinite Recursion can be avoided, whether by a different argument or by a different definition of
membership code. See subsection 2.1.2 below for some discussion.

8In the absence of Powerset, the various forms of Choice are no longer equivalent [Zar96]. That every set can be well-ordered
is stronger than the existence of choice functions.
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x y

{x} {x, y}

(x, y)

tW

...
...

...

. . .
. . .

Figure 2.3: A partial picture of W . The nodes x, y are from eltsA with x < y. Below x and y the membership
code W looks like A.

Let Γ be a well-order, possibly class sized. Then Γ + 1 = {(g, g′) : g Γ g′}∪ {(g, ?) : g ∈ dom Γ}∪ {(?, ?)},
where ? 6∈ dom Γ, is a membership code for an ordinal with ordertype Γ.9 So every well-order in the ground
model corresponds to an ordinal in the unrolling. Of particular interest is the ordinal in the unrolling whose
ordertype is the Ord of the ground universe.

Let κ denote the set in U represented by the membership code Ord + 1. Then U |= κ is regular. If the
ground universe moreover satisfies Powerset then U |= κ is inaccessible. To prove these facts—and later
results about U—it will be convenient to be able to translate facts about functions in U to facts about class
functions on the penultimate level of membership codes, and vice versa.

I will slightly abuse notation by writing e.g. F : A→ B to refer to a membership code for a function F
in U from the set represented by A to the set represented by B.

Lemma 2.16 (Over GBc− + ETR). There is a correspondence between class functions F : eltsA → eltsB
and membership codes for functions F ? : A→ B.

Proof. Let us do the simpler direction first. For the backward direction, suppose that G is a membership
code for a function from membership code A to membership code B. That is, if A′ ε A then there is B′ ε B
so that (in U) G maps A′ to B′. In particular, this holds for A′ of the form A ↓ a for a(A tA. Fix such a.
Then there is a unique ba (B tB so that G(A ↓ a) ∼= B ↓ ba. Set G?(a) = ba. This yields (in the ground
universe) a class function G? : eltsA→ eltsB.

For the forward direction of the correspondence, suppose that F : eltsA→ eltsB is a class function. Let
P be a membership code for the unordered pair whose elements are A and B. Such exists by proposition
2.14. Taking isomorphic copies if necessary we may assume without loss that A,B ⊆ P . We will now modify
P to produce the membership code F ?. This is done similar to the argument in proposition 2.15 to construct
a membership code for a well-ordering of a set. Namely, throw away tP , tA, and tB to produce P ′.10 This
P ′ is in general not a membership code, but we will modify it to produce F ?. For a ∈ eltsA add nodes
for {a}, {a, F (a)} and (a, F (a)) to P ′. Then add edges in the obvious way: add an edge from a to {a}, an
edge from a to {a, F (a)}, an edge from {a} to (a, F (a)), an edge from F (a) to {a, F (a)}, and an edge from

9Of course, I assume here that dom Γ 6= V . But in case that does happen one can take an isomorphic copy of Γ with a
smaller domain.

10Unless either tA (P tB or tB (P tA, in which case keep, respectively, tA or tB .
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{a, F (a)} to (a, F (a)). Finally, add a new top element tF? and edges from each (a, F (a)) to tF? . This gives
the desired F ?.

a F (a)

{a} {a,F(a)}

(a,F(a))

tF?

...
...

...

. . .
. . .

Figure 2.4: A partial picture of F ?.

It is now easy to check that (F ?)? = F and (F?)
? ∼= F .

The same argument works more generally for relations.

Corollary 2.17 (Over GBc− + ETR). There is a correspondence between class relations R ⊆ eltsA× eltsB
and membership codes for relations R? between A and B.

Proposition 2.18 (Over GBC− + ETR). In U, κ is regular and the largest cardinal. Additionally, if the
ground universe satisfies Powerset then κ is a strong limit, hence inaccessible.

Proof. (κ is regular) Let Γ be a membership code for an ordinal shorter than Ord. Then Γ must be set-sized.
Suppose towards a contradiction that there is a membership code for a cofinal function F ? : Γ → Ord.
Let F : elts Γ → elts(Ord + 1) be the corresponding function. I claim F must be cofinal in the order on
elts(Ord + 1) = Ord. To see this, pick α ∈ Ord. Then because F ? is cofinal there is β > α so that for some
g ∈ elts Γ we have F ?(Γ ↓ g) = (Ord + 1) ↓ β. But then F (g) = β > α, establishing that F is cofinal. This
is impossible, however, since Ord is a class and elts Γ is a set.

(κ is the largest cardinal) Let Γ be a membership code for an ordinal longer than Ord. By Global Choice
there is a class bijection F : elts(Ord + 1) → elts Γ. Let F ? be the corresponding membership code for a
function F ? : Ord + 1→ Γ. We want to see that F ? represents a bijection. First, suppose that x 6= y are in
elts(Ord + 1). Then F (x) 6= F (y) and thus F ?((Ord + 1) ↓ x) 6∼= F ?((Ord + 1) ↓ y). So f is one-to-one. To
see f is onto α, take a ∈ eltsA. because F is a bijection, there is x ∈ elts(Ord + 1) so that F (x) = a. Thus
F ?((Ord + 1) ↓ x) ∼= A ↓ a.

(κ is strong limit, if the ground universe satisfies Powerset) Take Γ a membership code for a well-order
shorter than Ord. Then Γ is set-sized. Because the ground universe satisfies powerset this means there is
a set-sized membership code for 2Γ and thus 2Γ represents an ordinal less than κ. More explicitly, by the
Mostowski collapse theorem we may assume without loss that Γ = ∈ � (γ + 1) for some ordinal γ. Then
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2Γ is represented by the membership code ∈ � (2γ + 1), where 2γ denotes cardinal exponentiation while the
addition is ordinal addition.

It requires full second-order Comprehension to get full Separation in the unrolled model. However, it
goes level by level.

To prove this we will need to translate between first-order formulae to be interpreted over U and second-
order formulae to be interpreted in the ground universe. That is, given first-order ϕ there is a formula ϕ∗

so that U |= ϕ if and only if the ground universe satisfies ϕ∗. This purely syntactic translation is given by
the following schema.

• If ϕ is of the form x = y then ϕ∗ is X ∼= Y .

• If ϕ is of the form x ∈ y then ϕ∗ is X ε Y .

• If ϕ is of the form ψ ∨ θ then ϕ∗ is ψ∗ ∨ θ∗, and similarly for conjunctions.

• If ϕ is of the form ¬ψ then ϕ∗ is ¬ψ∗.

• If ϕ is of the form ∃xψ(x) then ϕ∗ is ∃X X is a membership code and ψ∗(X), and similarly for
unbounded universal quantifiers.

• If ϕ is of the form ∃x ∈ yψ(x) then ϕ∗ is ∃x (Y tY ψ∗(Y ↓ x), and similarly for bounded universal
quantifiers.

Recall that capitals are for second-order variables while lowercase letters are for first-order variables.
This translation assumes there is some fixed in advance correspondence between first-order variables and
second-order variables so that e.g. x can be replaced by X. The details of this correspondence are completely
uninteresting and will be suppressed.

Given a formula ϕ(x̄) we translate it into a formula ϕ∗(X̄). This is a purely syntactic translation defined
via a recursion on the countable set of first-order formulae, which can be carried out in a weak fragment of
ZFC−. The translation is transparent to parameters: to handle formulae augmented with parameters ϕ(Ā)
simply consider ϕ∗(Ā).

First we need to see that this translation is coherent, since we gave different translations for ∃x ∈ y ϕ(x)
and ∃x (x ∈ y ∧ ϕ(x)).

Lemma Schema 2.19 (Over GBc−). For all formulae ϕ(x) in the language of first-order set theory, GBc−

proves that if A and B are isomorphic membership codes then ϕ∗(A)⇔ ϕ∗(B).

Proof. This is an easy induction on formulae.

Lemma Schema 2.20 (Over GBc−). For all first-order formulae ϕ(x) the theory GBc− proves that (∃x x ∈
y ∧ ϕ(x))∗ is equivalent to (∃x ∈ y ϕ(x))∗.

Proof. Consider a formula ϕ. Work in GBc− and consider an arbitrary membership code Y .
(⇒) Suppose there is a membership code X so that X ε Y and ϕ∗(X). By the definition of ε there is

x ( tY so that X ∼= Y ↓ x. But then ϕ∗(Y ↓ x) holds because of the previous lemma plus the fact that
ϕ∗(X) holds, so we are done.

(⇐) Suppose there is x( tY so that ϕ∗(Y ↓ x) holds. We want to see there is a membership code X so
that X ε Y and ϕ∗(X). Take X = Y ↓ x. Done.

Lemma 2.21 (Over GBc− + ETR). Both X ∼= Y and X ε Y are ∆1
1.

Proof. The definitions of these are both Σ1
1. So it remains to see that they are equivalent to Π1

1 assertions. Let
us consider AεB; similar reasoning works for A ∼= B. If AεB then this must be witnessed by the maximum
initial partial isomorphism π

...A→ B. So to say that A 6ε B it is equivalent to say that the maximum initial
partial isomorphism π

... A→ B does not have a range of the form B ↓ a for some a(B tB . Thus, A 6ε B is
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Σ1
1-expressible, via the formula asserting that there is an initial partial isomorphism π

... A → B so that (1)
for some x ∈ domA \ domπ there is no y ∈ domB so that π ∪ {(x, y)} is an initial partial isomorphism and
(2) for all a(B tB there is a′ ≤B a so that a′ 6∈ ranπ. Therefore A ε B is equivalent to a Π1

1-formula.

Lemma 2.22 (Over GBc− + ETR). If ϕ is Σk for k ≥ 1 then ϕ∗ is equivalent to a Σ1
k formula.

Proof. First, recall that being a membership code is a first-order property. So that cannot increase the
logical complexity of ϕ∗.

Lemma 2.21 allows us to absorb the class quantifiers from A ∼= B and AεB into the innermost quantifier
block of the translated formula. First, ϕ∗ is equivalent to a formula in prenex normal form. In particular,
all unbounded quantifiers are on the outside and ¬ only occurs in front of atomic statements. Suppose that
the innermost quantifier block consists of existential quantifiers. Then produce an equivalent Σ1

k-formula by
replacing all instances of ¬A ∼= B and ¬AεB with the equivalent Σ1

1 assertion. Thus, all bounded quantifiers
in ϕ become Σ1

1 assertions and thereby get absorbed into the innermost quantifier block. Similarly, if the
innermost quantifier block consists of universal quantifiers then replace all instances of A ∼= B and A ε B
with the equivalent Π1

1 assertion, thereby absorbing them.

Proposition 2.23 (Over GBc− + ETR). If the ground universe satisfies Π1
k-CA for k ≥ 1 then U satisfies

Σk-Separation. Thus, if the ground universe satisfies KM then the unrolled structure satisfies Separation.

In fact, the backwards implication is also true; see section 2.2.

Proof. Fix a membership code A and a Σk formula ϕ(x), possibly with (suppressed) parameters. We want
to find a membership code B so that B represents the subset of A formed using ϕ. Because ϕ∗ is equivalent
to a Σ1

k formula we can by Π1
k-CA form the collection of x (A tA so that ϕ∗(A ↓ x) holds. Closing this

collection downward in A and adding a top element gives a membership code B representing the subset of
A formed using ϕ.

The case for Collection is similar. We need full Class Collection to get Collection in the unrolled model,
but it goes level by level.

Proposition 2.24 (Over GBC−+ETR). If the ground universe satisfies Σ1
k-Class Collection then the unrolled

structure U satisfies Σk-Collection. Thus if the ground universe satisfies KMCC then the unrolled structure
satisfies Collection.

In fact, the backwards implication is also true; see section 2.2.

Proof. We want to show that U satisfies every instance of Σk collection. That is, consider a Σk-formula ϕ
and suppose there are membership codes A and P so that for all X ε A there is a membership code Y so
that ϕ∗(X,Y, P ). We want to find a membership code B which collects together all these witnessing Y .

By Σ1
k-Class Collection there is a class C of pairs (x, y) so that for each x (A tA we have ϕ∗(A ↓

x, (C)x, P ). We want to glue together the (C)xs to get the desired membership code B. This will be done
by means of a certain elementary transfinite recursion.

There are two layers to the recursion. The outer layer is along eltsA, according to some fixed enumeration
〈xα : α ∈ Ord〉. Each stage α of the outer layer yields a partial construction of B, let us call it Bα, along with
Pα a partial listing of what will be the penultimate level of B. Stage 0 is merely to take B0 = ∅ and P0 = ∅.
Having done stage α, for stage α + 1 we must do the inner layer of the recursion to produce the maximum
initial partial isomorphism π

... (C)xα → Bα. We then use it to define Bα+1 by adding on everything in (C)xα
which we have not yet accounted for. Formally, set

Bα+1 = Bα

∪ (C)xα � (domC \ domπ)

∪ {(π(c), c′) : (c, c′) ∈ C and c ∈ domπ and c′ 6∈ domπ}.
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We also add either t(C)xα
or π(t(C)xα

) as appropriate to Pα to get Pα+1 At limit stages λ take unions:
set Bλ =

⋃
α<λBα and Pλ =

⋃
α<λ Pα. Finally, after Ord steps we produce B from BOrd by adding a

top element connecting each element of POrd to this new top element. Then B is the desired membership
code.

The following theorem summarizes what U’s theory will be, based upon the theory of the ground universe.

Theorem 2.25. Let (M,X ) be a model of second-order set theory and let U be the unrolled model constructed
inside (M,X ).

• If (M,X ) |= KMCC then U |= ZFC−I .

• If (M,X ) |= KMCC− then U |= ZFC−R .

• If (M,X ) |= KM then U |= wZFC−I .

• If (M,X ) |= KM− then U |= wZFC−R .

• If (M,X ) |= GBC + Π1
k-CA + Σ1

k-CC then U |= ZFC−I (k), for k ≥ 1.

• If (M,X ) |= GBC− + Π1
k-CA + Σ1

k-CC then U |= ZFC−R(k), for k ≥ 1.

• If (M,X ) |= GBC + Π1
k-CA then U |= wZFC−I (k), for k ≥ 1.

• If (M,X ) |= GBC− + Π1
k-CA then U |= wZFC−R(k), for k ≥ 1.

In section 2.2 we will get the backward results. But first we must address the conspicuous absence of
GBC+ETR and GBC−+ETR from this last theorem. The following subsection will also establish that for all
of the above, the unrolling U satisfies Σ0-Transfinite Recursion. Of course, Σ0-Transfinite Recursion follows
from Σ1-Collection, so this is only additional content for the theories which lack a fragment of Collection.

2.1.1 Unrolling in GBC+ ETR

Above, to show that U satisfies a fragment of Separation and Collection—dependent upon the fragment of
Comprehension and Class Collection satisfied in the ground universe—we used a translation ϕ 7→ ϕ∗. Given
a first-order formula ϕ in the language of set theory this translation produced a second-order formula ϕ∗

about membership codes. We used that A ε B and A ∼= B are ∆1
1 over GBC− + ETR, so that the class

quantifiers arising from the translation of a = b and a ∈ b could be absorbed by the block of class quantifiers
at the front of a prenex-normal form formula equivalent to ϕ∗.

This of course will not work if we do not have class quantifiers at the front. These came from translating
unbounded quantifiers from ϕ. But, as we will finish seeing later, wZFC−R(1)—which allows Separation for
formulae with only a single unbounded quantifier in front—is bi-interpretable with GBC− + Π1

1-CA, which
is stronger than GBC− + ETR. So we cannot hope to absorb the class quantifiers arising from A ε B and
A ∼= B. If we want to calculate the theory of unrollings of models of GBC+ ETR and GBC− + ETR we must
use a different translation.

The key idea is that to check the truth of an assertion which only has bounded quantifiers it suffices to
look at a single membership code. Before giving the translation let me illustrate this with an example.

We work in GBC− + ETR. Suppose we are given a membership code E and we wish to know whether E
represents an ordered pair in the unrolling, say according to Kuratowski’s definition. Formally, we want to
know whether

∃A,B ε E
(
∀X ε E (X ∼= A ∨X ∼= B)

∧ ∀Y, Y ′ ε A
(
Y ∼= Y ′ ∧ Y ε B

∧ ∀Z,Z ′ ε B ([Z 6∼= Y ∧ Z ′ 6∼= Y ]⇒ Z ∼= Z ′)
))
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is true. Expanding out the definitions of ∼= and ε this formula has fourteen class quantifiers, which is too
many to handle directly in GBC + ETR. But we do not have to look at, for example, all membership codes
A,B so that A,B ε E. It suffices to look just at all membership codes of the form E ↓ x for x ∈ eltsE.
Similar considerations apply for the other instances of ε or ∼= in this formula. So it is equivalent to ask
whether

∃a, b(E tE

(
∀x(E tE (x = a ∨ x = b)

∧ ∀y, y′(E a
(
y = y′ ∧ y(E b

∧ ∀z, z′(E b ([z 6= y ∧ z′ 6= y]⇒ z = z′)
))

is true. This formula only has set quantifiers.

Definition 2.26 (Over GBC−+ETR). Let ϕ(A1, . . . , An) be a Σ0-formula in the language of first-order set
theory with parameters A1, . . . , An, which are membership codes, and possibly with free variables. Then
ϕ?(Ā) is defined as follows. First, let P be the membership code for the ‘set’ {A1, . . . , An}. This can be
constructed by an instance of Elementary Transfinite Recursion, similar to the construction of unordered
pairs. For 1 ≤ i ≤ n let ai(P tP be the unique member of the penultimate level of P so that P ↓ ai ∼= Ai.
Then ϕ?(Ā) is defined by the following schema. Here, t and s are either variables x, y, z, . . . or one of the
ai’s.

• If ϕ is t = s then ϕ? is t = s.

• If ϕ is t ∈ s then ϕ? is t(P s.

• If ϕ is ψ ∧ θ then ϕ? is ψ? ∧ θ?, and similarly for disjunctions.

• If ϕ is ¬ψ then ϕ? is ¬ψ?.

• If ϕ is ∃x ∈ t ψ(x) then ϕ? is ∃x(P t ψ
?(x), and similarly for bounded universal quantification.

Thus, ϕ? is a Σ0
ω-formula in the parameter P .

This translation is not purely syntactic, since we needed to know the parameters Ā to construct P .
Nevertheless, given ϕ(Ā) we can construct ϕ?(P ) by an elementary recursion. So GBC−+ ETR lets us carry
out the translation.

Proposition 2.27 (Over GBC− + ETR). The unrolled model U satisfies Σ0-Separation.

Proof. Fix a membership code A and a Σ0-formula ϕ(x, B̄) with parameters B̄. By Elementary Compre-
hension form the class of all x (A tA so that ϕ?(x, P ) holds, where P is constructed from B̄ and A as in
the translation. Closing this collection downward in A and adding a top element gives a membership code
representing the subset of A formed using ϕ.

We get more than Σ0-Separation. As a warm-up, let us see that the unrolled model has transitive
collapses.

Proposition 2.28 (Over GBC− + ETR). The unrolled model U satisfies Mostowski’s collapse lemma that
every well-founded extensional binary relation is isomorphic to the restriction of the membership relation to
some set.

I provide only a sketch of an argument, as we will prove a more general statement later.

Proof sketch. Let E be a membership code for a well-founded extensional relation on A. By corollary 2.17
take the corresponding class relation E? ⊆ eltsA×eltsA. Then E? is itself almost a membership code; all that
is missing is that it does not have a top element. Consider the membership code F = E?∪{(e, †) : e ∈ domE?}
where † is a new element. Then in the unrolling E is isomorphic to the membership relation restricted to
the set represented by F .
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More generally, the unrolled model U starting from a model of GBC− + ETR will satisfy a transfinite
recursion principle.

Definition 2.29. Let Φ be a collection of formulae in the language of first-order set theory. Then Φ-
Transfinite Recursion is the axiom schema consisting of the following axiom for each ϕ(x, y, a) ∈ Φ:

Suppose a is a parameter so that ϕ(x, y, a) defines a class function F : V → V and D is a set equipped
with a well-ordering <D. Then there is a function s : D → V so that for all d ∈ D we have s(d) = F (s � d)
where s � d means s � {d′ ∈ D : d′ <D d}.

Before seeing that the unrolled structure satisfies Σ0-Transfinite Recursion let us justify the “more gen-
erally” above and check that Σ0-Transfinite Recursion (along with the other axioms we already know to be
satisfied by the unrolled model) proves Mostowski’s collapse lemma.

Proposition 2.30. The theory wZFC−R(0) + Σ0-Transfinite Recursion11 proves Mostowski’s collapse lemma.

Proof. Let e be a binary well-founded, existential relation on a set D. We want to see that there is a function
π with domain D satisfying π(d) = {π(d′) : d′ e d}. This is a recursive requirement on π, where the property
we want to recursively satisfy is Σ0. So it exists by Σ0-Transfinite Recursion.

Proposition 2.31 (Over GBC− + ETR). The unrolled structure U satisfies Σ0-Transfinite Recursion.

Proof. Consider an instance of Σ0-Transfinite Recursion. That is, F is a class function U → U which is
Σ0-definable, possibly using a membership code as a parameter, and D is a membership code equipped with
<D a membership code for a well-ordering of D. We want to see that there is a membership code for the
desired s. First, observe that in the ground universe that F is first-order definable (from parameters), by
the translation.

We will build the the desired membership code S via an instance of Elementary Transfinite Recursion.
The idea is to mimic the recursion to produce s, but in membership codes. This introduces some extra work,
since we have to deal with the picky details of how membership codes work.

The iteration proceeds as follows, with an outer layer and an inner layer. The outer layer occurs on eltsD
according to the well-ordering corresponding to the membership code <D (see corollary 2.17). Each step d in
the outer layer produces a partial construction of S, call it Sd. We start with S0 = ∅ and take unions at limit
stages. The hard work is done in the successor step, where the inner layer of the transfinite recursion occurs.
We start with Sd and want to produce Sd+1. By construction, each d′ ∈ eltsD which comes before d in <D
is in Sd. More, there is a corresponding node, call it f(d′), which represents F (Sd � d′) and then nodes for
{d′}, {d′, f(d′)}, and (d′, f(d′)) above, similar to the constructions in proposition 2.15 and lemma 2.16. In
particular, Sd itself may not be a membership code. Modify Sd to produce a membership code U by adding
a top node tU and edges from each (d′, f(d′)) node in Sd to tU . Then, we have a membership code F (U)
by Elementary Comprehension. Construct by transfinite recursion the maximum initial partial isomorphism
between Sd and F (U) and use it to glue a copy of F (U) onto Sd, as in the argument for proposition 2.24.
Then, add d+ 1 to Sd along with nodes for {d+ 1}, {d+ 1, tF (U)}, and (d+ 1, tF (U)) and the corresponding
edges to produce Sd+1.

This completes the last step in the calculation of the theory of the unrolled model starting with a ground
universe satisfying GBC + ETR or GBC− + ETR.

Corollary 2.32. Let (M,X ) be a model of second-order set theory and let U be the unrolled model constructed
inside (M,X ).

• If (M,X ) |= GBC− + ETR then U |= wZFC−R(0) + Σ0-Transfinite Recursion.

• If (M,X ) |= GBC + ETR then U |= wZFC−I (0) + Σ0-Transfinite Recursion.

In section 2.2 we will get the backward direction.

11That is, the theory with axioms axioms Extensionality, Pairing, Union, Infinity, Foundation, Choice (in the guise of the
well-ordering theorem), Σ0-Separation, and Σ0-Transfinite Recursion.
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2.1.2 How hard is it to unroll?

I wish now to address the question of what is needed for the unrolling to satisfy a reasonable theory. As the
reader who has familiarity with coding hereditarily countable sets as reals will know, there is more than one
way to do the coding. Which coding one prefers is, to a significant extent, a matter of taste. However, it
means I must also address whether my choice of coding affects how strong a theory is needed in the ground
universe to carry out the unrolling.

First, let us consider other codings based on well-founded extensional directed graphs. For example,
rather than requiring the graph to have a largest element one could work with pointed graphs with a
designated point. If (A, pA) and (B, pB) are two such pointed graphs then they represent the same ‘set’
if A ↓ pA ∼= B ↓ pB , with a corresponding definition of ε.12 It is not hard to see that such a coding will
require the existence of maximum initial partial isomorphisms in the same places where they are required
by membership codes according to my definition. So this coding is no easier than the one I use.

The question then is, what is needed to carry out my coding? As remarked in section 2.1, GBc− suffices
to define membership codes, isomorphism between them, and their membership relation ε. So it takes very
little just to unroll into some structure. But we do not want to unroll to some arbitrary structure, we want to
unroll into a model of (first-order) set theory. This lacks a precise definition, but it should be uncontroversial
to say that to be a model of set theory a structure must at least satisfy the basic axioms: Extensionality,
Pairing, Union, and so forth. Earlier, we used Elementary Transfinite Recursion to show that the unrolling
satisfies Extensionality and Pairing. More specifically, GBC− + ETR proves the existence of maximal initial
partial isomorphisms between membership codes, which is what we used. Indeed, the existence of such is
necessary.

Proposition 2.33 (Over GBc−). If U satisfies Pairing then if A and B are membership codes there is a
maximum initial partial isomorphism between them.

Proof. Fix A and B. Then there is a membership code P so that E ε P if and only if E ∼= A or E ∼= B. Let
πA : A→ P and πB : B → P be the embeddings into P . Then π−1

B ◦ πA � (ranA ∩ ranB) is the maximum
initial partial isomorphism from A to B.

A special case of this is of interest.

Corollary 2.34 (Over GBC−). If the unrolling U satisfies Pairing then the ground model satisfies the
comparability of class well-orders: given class well-orders Γ and ∆ either Γ embeds as an initial segment of
∆ or vice versa.

Proof. Let A and B be membership codes for ordinals. That is, A and B are class well-orders of successor
length. The initial partial isomorphism π between them gives a comparison map. If neither domπ = A nor
ranπ = B then we can extend π to a larger initial partial isomorphism, namely by mapping min(A \ domπ)
to min(B \ ranπ). Note that this definition can be done using Elementary Comprehension, because it is a
first-order property to be the minimum of a well-order. So it must be that either domπ = A, in which case
A has ordertype ≤ that of B, or ranπ = B, in which case B has ordertype ≤ that of A.

The general case then follows because Γ and ∆ are comparable if and only if Γ + 1 and ∆ + 1 are
comparable.

What does it take to show that class well-orders are always comparable? It is clear that GBC− + ETR
suffices; we want a map which satisfies the recursive requirement that e(g) is the least element of dom δ
which is above the range of e � g. Can we get away with less than Elementary Transfinite Recursion?

In second-order arithmetic, the answer to the analogous question is no. Over RCA0, the comparability
of well-orders is equivalent to ATR0 (see [Sim09, chapter V.6]). But this proof uses that in arithmetic, “X
is a well-order” is Π1

1-universal. This fails badly in set theory, as in this context “X is a well-order” is an
elementary assertion. So the proof from second-order arithmetic will not generalize.

12I leave it to the reader to explicitly write down the definition of ε for this coding.
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Question 2.35. Over GBC−, what is the strength of the comparability of class well-orders?

Let us now look at alternative codings which use trees instead of graphs. Perhaps there things may
be easier. This is the approach taken by Antos and Friedman [AF], whom one should consult for precise
definitions. To illustrate the idea, consider a set-sized well-founded tree (T,<T ). By the Mostowski collapse
lemma, there is a map π which maps T to a transitive set a so that s <T t if and only if π(s) ∈ π(t). (This
π will not in general be one-to-one.) Rather than representing sets with graphs we can represent them with
certain trees. Membership is defined similarly as to my membership codes; say that S εtree T if there is is a
child node t of the root node of T so that S is isomorphic to the subtree of T below t.

An advantage of this coding is that satisfying Pairing is trivial. To form a code for the unordered pair of S
and T just make a tree whose root has two children, which are the roots of S and T . However, Extensionality
still gives trouble. Similar to the case with membership codes, we want to conclude that S ∼= T knowing that
U εtree S if and only if U εtree T . This amounts to wanting to glue together partial isomorphisms between
S and T to get a full isomorphism. Naively, one wants to define an isomorphism π between S and T by
mapping subtrees from a child of the root of S to the isomorphic copy under the root of T and mapping the
root of S to the root of T . But this uses an obfuscated appeal to Π1

1-Comprehension; cf. the remarks after
lemma 2.10. The same idea used to show my membership codes satisfy Extensionality can be used here,
namely using Elementary Transfinite Recursion to conclude there is a maximal initial partial isomorphism
between the trees and then showing that this must be a full isomorphism. So we look to be in no better
condition by coding with trees instead of graphs.

2.2 The cutting off construction

The other direction of the bi-interpretability results is more straightforward. Suppose we have a first-order
model of set theory which has a largest cardinal κ and Hκ exists in the model so that Hκ |= ZFC−. We
can construct a second-order model whose first-order part is Hκ and whose second-order part is the (proper
class of) subsets of Hκ in the model. The stronger the theory satisfied by the first-order model, the stronger
the theory that will be satisfied by the second-order model gotten by this cutting off.

Formally, we will define an interpretation of formulae in the language of second-order set theory in the
language of first-order set theory with a constant symbol κ for the largest cardinal of the (first-order) model.
Of course, κ is definable so this use of a constant symbol is only a convenience. This interpretation ϕ 7→ ϕI

is given by the following schema.

• The interpretation of x ∈ y is x ∈ y and the interpretation of x ∈ Y is x ∈ Y—that is, both membership
relations for the second-order model will be the membership relation of the first-order model.

• The interpretation of x = y is x = y and the interpretation of X = Y is X = Y . Unlike the unrolling
construction we can directly use equality and not have to quotient out by an equivalence relation.

• The interpretation of ϕ ∧ ψ is ϕI ∧ ψI , and similarly for disjunction and negation;

• The interpretation of ∀xϕ is ∀x (x ∈ Hκ ⇒ ϕI) and similarly for first-order existential quantification;
and

• The interpretation of ∀Xϕ is ∀x (x ⊆ Hκ ⇒ ϕI) and similarly for second-order existential quantifica-
tion.

It is immediate that if ϕ is Σ1
k (in parameters) then ϕI is Σk (in parameters).

As a base theory for this section I will take wZFC−R(0) + Σ0-Transfinite Recursion. Recall that wZFC−R(0)
is the set theory axiomatized by Extensionality, Union, Pairing, Infinity, Foundation, Choice, Σ0-Separation,
plus the assertions that there is a largest cardinal κ, that κ is regular, and that Hκ exists. In particular,
wZFC−R(0) + Σ0-Transfinite Recursion proves that Hκ |= ZFC−.
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Proposition 2.36. Work in wZFC−R(0) + Σ0-Transfinite Recursion and let κ be the largest cardinal. Then
Hκ |= ZFC−.

Proof sketch. I will show that Hκ satisfies Separation. The rest is an easy exercise for the reader. Consider
a, p ∈ Hκ and fix some formula ϕ(x, p). We want to see that b = {x ∈ a : ϕ(x, p)Hκ} ∈ Hκ. Let T be the
truth predicate for Hκ, which exists by an instance of Σ0-transfinite recursion. We can then define b by
Σ0-Separation, namely to consist of those x ∈ a for which (ϕ, xap) ∈ T .

We can now see that all the axioms of GBC are satisfied by the cut-off model.

Proposition 2.37. If ϕ ∈ GBC−, then wZFC−R(0) + Σ0-Transfinite Recursion ` ϕI . Also, if ϕ ∈ GBC then
wZFC−I (0) + Σ0-Transfinite Recursion ` ϕI .

Proof. That (the interpretation of) ZFC− holds for the first-order part is because Hκ |= ZFC−. If κ is
moreover inaccessible then Hκ = Vκ moreover satisfies Powerset, thus full ZFC. Extensionality for classes
holds because of Extensionality in the first-order model. Global Choice holds because Choice holds in the
ground model: Any well-order of Hκ must have ordertype α for some α of size κ, since κ is the largest
cardinal. But then we can use this to get a well-order of ordertype κ, from which we can extract a bijection
κ → Hκ. Replacement holds because κ is regular. If ϕ is an instance of Elementary Comprehension, then
ϕI is Σ0 and thus holds by Separation applied to Hκ.

To get that the cut off model satisfies Π1
k-Comprehension requires Σk-Separation from the ground uni-

verse.

Proposition 2.38. If ϕ ∈ Π1
k-CA−, for k ≥ 1, then wZFC−R(k) + Σ0-Transfinite Recursion, i.e. wZFC−R(0) +

Σ0-Transfinite Recursion + Σk-Separation, proves ϕI . Thus, if ϕ ∈ Π1
k-CA, for k ≥ 1, then wZFC−I (k) + Σ0-

Transfinite Recursion proves ϕI .

Proof. Consider ϕ is an instance of Π1
k-Comprehension, i.e. ϕ asserts that there is a class whose members are

precisely those sets satisfying ψ where ψ is Π1
k, possibly with parameters. By Σk-Comprehension form A the

subset of Hκ consisting of those sets which satisfy ψI . This A is the desired class in the cut off model.

As an immediate corollary we get full Comprehension if the ground universe satisfies wZFC−R + Σ0-
Transfinite Recursion.

Corollary 2.39. If ϕ ∈ KM− then wZFC−R + Σ0-Transfinite Recursion ` ϕI . Thus, if ϕ ∈ KM then
wZFC−I + Σ0-Transfinite Recursion ` ϕI .

Next we turn to Class Collection.

Proposition 2.40. If ϕ ∈ Σ1
k-Class Collection, for k ≥ 1, then ZFC−R(k) proves ϕI .13

Proof. Let ϕ be an instance of Σ1
k-Class Collection. Then, ϕI asserts that if for every x ∈ Hκ there is

Y ⊆ Hκ so that ψI(x, Y, P ), then there is Z ⊆ Hκ so that for every x ∈ Hκ we have ψI(x, (Z)x, P ). Because
ψ is Σ1

k we have that ψI is Σk. Apply Σk-Collection to get B so that for all x ∈ Hκ there is Y ∈ B so that
Y ⊆ Hκ and ψI(x, Y, P ). Define

Z =
{

(x, b) ∈ Vκ ×
⋃
B : b ∈ Y where Y is least so that ψI(x, Y, P )

}
.

Here, Y is least by a fixed well-order of B. Then Z is manifestly a subset of Hκ and for all x ∈ Hκ we have
ψI(x, (Z)x, P ).

As an immediate corollary, full Collection in the ground model translates to full Class Collection in the
cut off model.

13Note that ZFC−R(k) includes Σ0-Transfinite Recursion.
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Corollary 2.41. If ϕ ∈ KMCC− then ZFC−R ` ϕI . Thus if ϕ ∈ KMCC then ZFC−I ` ϕI .

Finally, let us see what we need to get merely GBC + ETR or GBC− + ETR.

Proposition 2.42. If ϕ ∈ GBC− + ETR then wZFC−R(0) + Σ0-Transfinite Recursion proves ϕI .

Proof. Consider an instance of Elementary Transfinite Recursion. We want to find the subset of Hκ which
witnesses that instance holds. This is done in the obvious way by an instance of Σ0-Transfinite Recursion.

Altogether we can summarize the results so far in this section.

Theorem 2.43. Let N be an appropriate model for performing the cut off construction and let (M,X ) be
the cut off model constructed from N .

• If N |= ZFC−I then (M,X ) |= KMCC.

• If N |= ZFC−R then (M,X ) |= KMCC−.

• If N |= wZFC−I + Σ0-Transfinite Recursion then (M,X ) |= KM.

• If N |= wZFC−R + Σ0-Transfinite Recursion then (M,X ) |= KM−.

• If N |= ZFC−I (k) then (M,X ) |= GBC + Π1
k-CA + Σ1

k-CC, for k ≥ 1.

• If N |= ZFC−R(k) then (M,X ) |= GBC− + Π1
k-CA + Σ1

k-CC, for k ≥ 1.

• If N |= wZFC−I (k) + Σ0-Transfinite Recursion then (M,X ) |= GBC + Π1
k-CA, for k ≥ 1.

• If N |= wZFC−R(k) + Σ0-Transfinite Recursion then (M,X ) |= GBC− + Π1
k-CA, for k ≥ 1.

• If N |= wZFC−I (0) + Σ0-Transfinite Recursion then (M,X ) |= GBC + ETR.

• If N |= wZFC−R(0) + Σ0-Transfinite Recursion then (M,X ) |= GBC− + ETR.

Let us now see that these interpretations, combined with the ones from the previous section, give bi-
interpretability results. We need to see that performing one construction then its inverse brings us back to
the original model.

Theorem 2.44. Let (M,X ) |= GBC−+ETR and let U be the unrolled model constructed from (M,X ). Then,
if (M ′,X ′) is the cut off model constructed from U we get (M,X ) ∼= (M ′,X ′). Moreover, this isomorphism
is definable over (M,X ).

Proof. Fix a class A. Then in U this class A is represented by EA, the canonical membership code representing
A. So the map A 7→ EA gives an isomorphism (M,X ) ∼= (M ′,X ′).

And in the other direction.

Theorem 2.45. Let N |= wZFC−R(0) + Σ0-Transfinite Recursion and let (M,X ) be the cut off model con-
structed from N . Then if U is the unrolled model constructed from (M,X ) we get N ∼= U. Moreover, this
isomorphism is definable over N .

Proof. Let κ be the largest cardinal in N . Then for any set a ∈ N there is a binary relation Ea on Hκ so
that (TC({a}),∈) ∼= Ea. This uses that TC({a}) exists in N , which follows from Σ0-Transfinite Recursion.
So in the cut off model (M,X ) we have that Ea is a membership code representing the set a in the unrolling.
This map a 7→ Ea gives the isomorphism N ∼= U.
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Altogether this finishes the proof of theorem 2.2.
Let me remark on on the role of Σ0-Transfinite Recursion here. The reader may have noticed that

Σ0-Transfinite Recursion played little role in the arguments for calculating the theory of the cut off model.
It was used to conclude the cut off model satisfies ETR given a weak base theory, but it was not used to
get (fragments of) Comprehension in the cut off model. However, it plays an in important role for the
bi-interpretability results.

To illustrate this, take κ an inaccessible cardinal. Then Vκ+ω satisfies all the axioms of ZFC except the
Collection schema. Let W consist of all subsets of Hκ+ which appear in Vκ+ω. Then W |= wZFC−I . So
cutting off W gives (Vκ,X ) |= KM. But when we unroll (Vκ,X ) we get back more than W . For instance,
this unrolling contains an ordinal γ for each well-order in X , but these will of course often be larger than
κ+ω. So applying the cutting off construction followed by the unrolling construction starting from W does
not produce an isomorphic copy of W .

To finish off this section let us consider a basic but useful fact about unrollings.

Proposition 2.46. Let (M,X ) |= GBC− + ETR and let U be its unrolling. Then U is well-founded if and
only if (M,X ) is a β-model.

Proof. (⇒) If U is well-founded then every membership code in (M,X ) is well-founded. But every successor
class well-order is a membership code and every relation (M,X ) thinks is well-founded has a ranking function
into a class well-order, by ETR. Since the class well-orders are actually well-founded, so must every relation
the model thinks is well-founded.

(⇐) If (M,X ) is a β-model then in particular every membership code in X is well-founded.

2.3 The constructible universe in the classes

In this section I will exposit a construction of the constructible universe where we iterate longer than Ord.
If (M,X ) satisfies a sufficiently strong theory then it can carry out this construction. Let L denote the
hyperclass consisting of constructible classes from X . Then we will see that (LM ,L) has a nice theory,
with the precise details depending upon the theory of (M,X ). We will also carry out the construction of
the constructible relative to a class parameter. The main parameter of interest to us will be (N,G) where
N ∈ X is an inner model of M (possibly N = M) and G is a global well-order of N . Letting L(N,G) denote
the hyperclass of (N,G)-constructible classes we will then get that (N,L(N,G)) satisfies a nice theory. This
will imply that for many natural second-order set theories T that being T -realizable is closed under taking
inner models.

Theorem 2.47. Let (M,X ) |= GBC− + ETR and suppose N ∈ X is an inner model (of ZFC− or of ZFC,
as appropriate) of M . Then there is a hyperclass Y ⊆ X ∩ P(N) second-order definable in X so that the
following.

• If (M,X ) |= KM then (N,Y) |= KMCC.

• If (M,X ) |= KM− then (N,Y) |= KMCC−.

• If (M,X ) |= GBC + Π1
k-CA then (N,Y) |= GBC + Π1

k-CA + Σ1
k-CC.

• If (M,X ) |= GBC− + Π1
k-CA then (N,Y) |= GBC− + Π1

k-CA + Σ1
k-CC.

• If (M,X ) |= GBC + ETR then (N,Y) |= GBC + ETR + ECC.

• If (M,X ) |= GBC− + ETR then (N,Y) |= GBC− + ETR + ECC.

The last two, that being (GBC+ETR)-realizable or (GBC−+ETR)-realizable is closed under inner models,
will be proved in the next chapter. The rest will follow from results in this section.

The special case where N = M yields the following result, which I state separately.
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Corollary 2.48. Let (M,X ) |= GBC− + ETR. Then there is a definable hyperclass Y ⊆ X so that the
following.

• If (M,X ) |= KM then (M,Y) |= KMCC.

• If (M,X ) |= KM− then (M,Y) |= KMCC−.

• If (M,X ) |= GBC + Π1
k-CA then (M,Y) |= GBC + Π1

k-CA + Σ1
k-CC, for k ≥ 1.

• If (M,X ) |= GBC− + Π1
k-CA then (M,Y) |= GBC− + Π1

k-CA + Σ1
k-CC, for k ≥ 1.

• If (M,X ) |= GBC + ETR then (M,Y) |= GBC + ETR + ECC.

• If (M,X ) |= GBC− + ETR then (M,Y) |= GBC− + ETR + ECC.

That is, we can always obtain (a fragment of) Class Collection by moving to a possibly smaller V -
submodel.

The strategy in this section will be to define L somewhat indirectly. I will define L to consist of the
constructible membership codes. Then, L will be the classes which are coded in L. (Similar remarks apply
when constructing relative to a parameter.) This approach follows the usual construction of L. But since
we want to iterate the construction beyond Ord we will be too high in rank to use actual sets and will settle
for membership codes for sets. This approach also has the advantage that some of the arguments are trivial
modifications of arguments from section 2.1 of this chapter. As such, the reader is strongly encouraged to
read section 2.1 before reading this section.

Let us move now to the definitions.

Definition 2.49 (Over GBC− + ETR). Let Γ be a well-order. Denote by LΓ the class obtained by iterating
the definition of L along Γ. To clarify, LΓ is the membership code constructed according to the following
recursion:

• L0 is a membership code for ∅.

• Lα+1 is a membership code for Def(Lα).

• Lλ is a membership code for
⋃
α<λ Lα, for λ a limit element of Γ.

This definition cries out for clarification. Recall that GBC− + ETR proves the existence of (first-order)
truth predicates relative to a class. In particular, if (A,R0, R1, . . .) is a class-sized structure then by Elemen-
tary Transfinite Recursion can be constructed the truth predicate for (A,R0, R1, . . .); simply take take the
truth predicate for (V,∈, A,R0, R1, . . .) and throw away the irrelevant facts about the background universe.
In particular, this works for membership codes. So if E is a membership code which represents a ‘set’ e we
can build the truth predicate for (domE,E) and from it extract a membership code DE for the ‘set’ Def(e).
So ETR lets us construct membership codes that are of the form LΓ. We will see in the next chapter that
weaker principles will not suffice.

Of course, these membership codes are not unique, as there will be many isomorphic copies of LΓ. But
if we fix in advance the details of how we build DE from E then we have fixed a way to build LΓ from Γ.14

So in this sense it is justified to refer to LΓ as the membership code obtained by iterated the definition of L
along Γ.

Definition 2.50 (Over GBC− + ETR). Say that a membership code E is constructible if E ε LΓ for some
Γ. Let L consist of the membership codes for all constructible classes. We consider L as a first-order model
by quotienting out by isomorphism and using ε (see definition 2.11) for its membership relation. I will call
L the constructible unrolled model. Let L consist of all classes coded in L.

14I will not go into the details of the necessary coding, as it is routine and uninteresting.
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In particular, each LΓ is constructible, as LΓ ε LΓ+1. Note that this is true even if Γ is very complicated
and codes a lot of information. It will nevertheless be isomorphic to LΓ+1 ↓ e for some e ∈ elts(LΓ+1).

As in the usual first-order setting we can carry out the construction of L relative to some parameter(s).

Definition 2.51. Let P be a class and Γ a well-order. Denote by the LΓ(P ) the membership code obtained
by iterating the definition of L(P ) along Γ.

Definition 2.52. A membership code E is P -constructible if E ε LΓ(P ) for some Γ.
Similar to before, let L(P ) consist of the membership codes for all constructible classes. We consider

L(P ) as a first-order model by quotienting out by isomorphism and using ε as its membership relation. I
will call L(P ) the P -constructible unrolled model. Let L(P ) consist of all classes coded in L(P ).

Hereon work in a fixed (M,X ) |= GBC− + ETR, where we will require more from (M,X ) in various
propositions. Fix N ∈ X an inner model (of ZFC− or ZFC, as appropriate) of M and fix G ∈ X a GBC-
amenable global well-order of N . We want to calculate the theory of (N,L(N,G)), based upon how strong
the theory of (M,X ) is. Below, κ will denote the ordinal in L(N,G) which represents the Ord of N , i.e. κ
is represented by the membership code Ord + 1.

But first, let us check that there really is such a G.

Lemma 2.53. Let (M,X ) |= GBC− + ETR and let N ∈ X be an inner model of M which satisfies Choice.
Then there is a class G ∈ X which is a GBC-amenable global well-order of N .

Proof. Because X contains first-order truth predicates relative to any class it has uniform access to the
definable subclasses of a definable forcing notion over N . In particular, this works for the Cohen forcing
Add(Ord, 1)N to add a subclass of Ord. Let C ∈ X meet every definable dense subclass of Add(Ord, 1)N .
Then C codes a global well-order of N , which is necessarily GBC-amenable to N .

Now let us see that L(N,G) satisfies some basic axioms.

Proposition 2.54 (Over GBC− + ETR). The (N,G)-constructible unrolled model L(N,G) satisfies Exten-
sionality, Pairing, Union, Infinity, Foundation, Choice, and that the cardinal κ = OrdN is regular.

Proof sketch. This is proved similarly to the analogous results from section 2.1 (namely, theorem 2.13 and
propositions 2.14, 2.15, and 2.18).The new content is to check that the arguments never take us outside of
the constructible membership codes. Note in particular that L(N,G) satisfies Choice precisely because G is
coded in L(N,G).

Note that the previous proposition does not claim that L(N,G) |= “κ is the largest cardinal”. Indeed, this
will not in general be true. For a counterexample, consider countable Lα |= ZFC with κ < α so that Lα |= κ
is inaccessible. Now do a class forcing over Lα to collapse all cardinals > κ. This produces W |= ZFC−I with
OrdM = α and κ is the largest cardinal in W . Let (M,X ) |= KMCC be the model obtained by the cutting off
construction applied to W . Then we get that L(M,X ) is (isomorphic to) Lα. So L does not think that κ is the
largest cardinal. Observe however, that LM = Lκ is still KMCC-realizable, as V Lακ+1 is a KMCC-realization
for LM .

Back to calculating the theory of L(N,G), if the ground universe satisfies Powerset then L(N,G) will
think that κ, the cardinal in the unrolling corresponding to the Ord of the ground universe, is inaccessible.

Corollary 2.55 (Over GBC + ETR). The unrolled model L(N,G) satisfies that κ is inaccessible.

Proof. Unrolling with all membership codes, not just the (N,G)-constructible ones, gave that κ is inacces-
sible. Using fewer membership codes—and thus possibly having fewer sets in the unrolling—can only make
it easier for κ to be inaccessible.

Next, let us see that L(N,G) satisfies the level of Separation corresponding to the level of Comprehension
in the ground universe (M,X ). Similar to the proof of proposition 2.23 we will need to translate first-order
formulae ϕ into second-order formulae about membership codes. Here, however, we want to confine to talking
only about constructible membership codes. This translation ϕ 7→ ϕ∗L is given by the following schema.
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• If ϕ is of the form x = y then ϕ∗L is X ∼= Y .

• If ϕ is of the form x ∈ y then ϕ∗L is X ε Y .

• If ϕ is of the form ψ ∨ θ then ϕ∗L is ψ∗L ∨ θ∗L, and similarly for conjunctions.

• If ϕ is of the form ¬ψ then ϕ∗L is ¬ψ∗L.

• If ϕ is of the form ∃xψ(x) then ϕ∗L is ∃X X is a constructible membership code and ψ∗L(X), and
similarly for unbounded universal quantifiers.

• If ϕ is of the form ∃x ∈ yψ(x) then ϕ∗L is ∃x(Y tY ψ∗L(Y ↓ x), and similarly for bounded universal
quantifiers.

Like before, this translation does not increase complexity.

Lemma 2.56. If ϕ is Σk for k ≥ 1 then ϕ∗L is equivalent to a Σ1
k-formula.

Proof sketch. First, let us see by induction that (ϕL)∗, using the ∗-translation from lemma 2.22, is equivalent
to ϕ∗L. The only step to check is the unbounded quantifier step, as that is the only nontrivial step in the
definition of the relativization ϕ 7→ ϕL. Suppose ϕ is of the form ∃x ψ(x). Then ϕL is of the form
∃x ∈ L ψ(x)L. By inductive hypothesis, (ψ(x)L)∗ is equivalent to ψ(x)∗L. But then we are done, since
(x ∈ L)∗ is equivalent to “X is a constructible membership code”.

So, using lemma 2.22, we are done once we know that ϕL is equivalent to a Σk formula when ϕ is Σk.
This is also seen by induction. The base case, k = 0, is trivial because ϕL is just ϕ for a Σ0-formula ϕ. Now
suppose ϕ is of the form ∃x ψ(x) where ψ is Πk. By inductive hypothesis ψL is equivalent to a Πk-formula.
So ϕL, which is ∃x ∈ L ψ(x)L is equivalent to a Σk+1-formula, because “x ∈ L′′ is Σ1, as desired.

Proposition 2.57 (Over GBC−+ETR). If the ground universe (M,X ) satisfies Π1
k-CA then L(N,G) satisfies

Σk-Separation, for k ≥ 1.

As an immediate corollary we get the following.

Corollary 2.58 (Over GBC− + ETR). If the ground universe (X,X ) satisfies full Comprehension then
L(N,G) satisfies Separation.

Proof of proposition 2.57. Fix a constructible membership code A and a Σk-formula ϕ(x), possibly with
(suppressed) parameters. Because ϕ∗L is equivalent to a Σ1

k-formula we may by Π1
k-Comprehension form the

collection of x(A tA so that ϕ∗L(A ↓ x). Closing this collection downward in A and adding a top element
gives a membership code B representing the subset of A formed using ϕ.

Altogether, we have seen the following.

Theorem 2.59. Let (M,X ) |= GBC− + ETR, N ∈ X be an inner model (of ZFC− or ZFC, as appropriate)
of M , and G ∈ X a GBC-amenable global well-order of N .

• If (M,X ) |= KM then L(N,G) |= wZFC−I .

• If (M,X ) |= KM− then L(N,G) |= wZFC−R .

• If (M,X ) |= GBC + Π1
k-CA then L(N,G) |= wZFC−I (k).

• If (M,X ) |= GBC− + Π1
k-CA then L(N,G) |= wZFC−R(k).

Combined with theorem 2.43 we immediately get the following.

Theorem 2.60. Let (M,X ) |= GBC− + ETR, N ∈ X be an inner model (of ZFC− or ZFC, as appropriate)
of M , and G ∈ X a GBC-amenable global well-order of N .
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• If (M,X ) |= KM then (N,L(N,G)) |= KM.

• If (M,X ) |= KM− then (N,L(N,G)) |= KM−.

• If (M,X ) |= GBC + Π1
k-CA then (N,L(N,G)) |= GBC + Π1

k-CA.

• If (M,X ) |= GBC− + Π1
k-CA then (N,L(N,G)) |= GBC− + Π1

k-CA.

This is most of theorem 2.47. We have not yet handled the cases of GBC + ETR and GBC− + ETR,
which will happen in the next chapter. It also remains to see that (N,L(N,G)) satisfies a fragment of Class
Collection corresponding to the amount of Comprehension satisfied by the ground universe.

Proposition 2.61. If the ground universe (M,X ) satisfies Π1
k-Comprehension, then L(N,G) satisfies Σk-

Collection.

As an immediate corollary we get the following.

Corollary 2.62 (Over GBC− + ETR). If the ground universe satisfies full Comprehension, then L(N,G)
satisfies Collection.

Proof of proposition 2.61. The key step in the argument for this proof is encapsulated by the following
lemma.

Lemma 2.62.1 (Over GBC− + Π1
k-CA). The (N,G)-constructible unrolled model L(N,G) satisfies Σk-

reflection with respect to the L(N,G)-hierarchy: For any a ∈ L(N,G) and any Σk-formula ϕ(x, p) there is
an ordinal γ so that a ∈ Lγ(N,G)L(N,G) and for all x ∈ Lγ(N,G)L(N,G) we have Lγ(N,G)L(N,G) |= ϕ(x, a)
if and only if L(N,G) |= ϕ(x, a). Moreover, such γ are unbounded in the ordinals of L(N,G).

Before proving the lemma, let us see how it lets us prove the proposition. This is the familiar argument
that reflection implies collection.

Work in L(N,G). Fix a and assume that for every x ∈ a there is y so that ϕ(x, y, p), where p is some
parameter. We want to find a b so that for all x ∈ a there is y ∈ b so that ϕ(x, y, p). By the lemma, there
is γ so that ϕ reflects to Lγ(N,G) 3 a. Hence, for every x ∈ a there is y ∈ Lγ(N,G) so that ϕ(x, y, p). The
desired b is then Lγ(N,G).

Proof of lemma 2.62.1. I will give a false proof, indicate the error therein, and then explain how to fix the
error, giving a proof that works.

The first way one might attempt to prove this is to work in L(N,G) and try to find γ so that Lγ(N,G)
is closed under witnesses to existential subformulae of ϕ. We start with γ0 so that p ∈ Lγ0(N,G). Then,
define γn+1 to be the least ordinal η so that Lη(N,G) is closed under witnesses to existential subformulae of
ϕ with parameters in Lγ(N,G). Such γn+1 exists because the ground universe satisfies Π1

k-Comprehension
and ϕ∗L is Σ1

k. We then define γ to be the supremum of the sequence 〈γn〉.
The problem with this argument is that it is circular; Collection says we can collect the γn, but that is

what we are trying to prove! If we look from the perspective of the KM model, we are appealing to Class
Collection to pick out (membership codes for) these γn. If we could find a way to pick these γn without
using Class Collection, then the argument would go through. We would get a sequence of meta-ordinals 〈Γn〉
coded in X and from that be able to construct a membership code for Lsupn Γn(N,G).

Fix a relation C ⊆ Ord2 which is isomorphic to ∈N . Call a membership code compliant if E � Ord = C.
Let Γ be a meta-ordinal. I claim that in (M,X ) we can uniquely pick an isomorphic copy of Γ. First, note
that if Γ ε L∆(N,G) then in L∆(N,G) there is a least Γ∆

∼= Γ. That is, Γ∆ = L∆(N,G) ↓ g for some
g( tL∆(N,G) where this g is picked according to the L-order for L∆(N,G). The key observation now is that
if L∆(N,G) and L∆′(N,G) are compliant, then Γ∆ = Γ∆′ . This is because they agree on how they code N
but elements of Γ∆ and Γ∆′ are pairs of elements of the code of N in L∆(N,G) and L∆′(N,G), respectively.
This yields a way to uniquely pick an isomorphic copy of Γ: pick any ∆ so that Γ ε L∆(N,G) and then look
at Γ∆. This is well-defined.
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We can use this now to pick the Γn for the above argument. Since we can do this for all n, we can code
the sequence 〈Γn〉 by the class Z = {(n, a) : a ∈ Γn}. From this produce a meta-ordinal Γ of ordertype
supn Γn and build LΓ(N,G). Moving to the first-order model, LΓ(N,G) is a representative of the equivalence
class for the desired Lγ(N,G).

Finally, note that the moreover is immediate as to ensure that γ > α for some ordinal α one can run the
argument using a′ = (a, α) rather than a.

The same argument shows that we can get a fragment of Class Collection starting from ETR, except
using the ?-translation of definition 2.26 rather than the ∗-translation.15 In fact, the argument is a little
easier in this case since we only have to worry about Σ0-formulae and if ϕ is Σ0 then ϕL is just ϕ.

Corollary 2.63 (Over GBC−+ETR). The (N,G)-constructible unrolling L(N,G) satisfies Elementary Class
Collection ECC.

This is the final step needed to prove corollary 2.48, which I restate below for the convenience of the
reader who does not want to flip back a few pages.

Theorem. Let (M,X ) |= GBC− + ETR. Then there is a definable hyperclass Y ⊆ X so that the following.

• If (M,X ) |= KM then (M,Y) |= KMCC.

• If (M,X ) |= KM− then (M,Y) |= KMCC−.

• If (M,X ) |= GBC + Π1
k-CA then (M,Y) |= GBC + Π1

k-CA + Σ1
k-CC, for k ≥ 1.

• If (M,X ) |= GBC− + Π1
k-CA then (M,Y) |= GBC− + Π1

k-CA + Σ1
k-CC, for k ≥ 1.

• If (M,X ) |= GBC + ETR then (M,Y) |= GBC + ETR + ECC.

• If (M,X ) |= GBC− + ETR then (M,Y) |= GBC− + ETR + ECC.

2.4 The smallest heights of transitive models and β-models

As an application of the results in this chapter I would like to investigate the smallest heights of transitive
and β-models of GBC + Π1

k-CA. This builds upon prior work of Marek and Mostowski.

Theorem 2.64 (Marek and Mostowski [MM75]). Assume there is a β-model of KM. Let βω be the least
height of a β-model of KM and let τω be the least height of a transitive model of KM. Then

• τω < βω; and moreover

• Lβω |= τω is countable.

I will generalize their argument to fragments of KM.

Definition 2.65. Let βω be the least height of a β-model of KM and let τω be the least height of a transitive
model of KM. For n ∈ ω let

• βn be the least height of a β-model of GBC + Π1
n-CA; and

• τn be the least height of a transitive model of GBC + Π1
n-CA.

By corollary 2.48 it is equivalent to define βn as the least height of a β-model of GBC + Π1
n-CA + Σ1

n-CC
and τn as the least height of a transitive model of GBC + Π1

n-CA + Σ1
n-CC.

Definition 2.66. For γ < δ ordinals countable in L say that γ � δ if Lδ |= γ is countable.

Theorem 2.67. Let m < n ≤ ω. Assume there is a transitive model of GBC + Π1
n-CA. Then, βm � τn.
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ωL1

– τ1

– β1

...

– τn

– βn

...

– τω

– βω

Figure 2.5: The least heights of transitive and β-models of fragments of KM. The ordinals in the picture are
ordered by �.

Theorem 2.68. Let 1 ≤ n ≤ ω. Assume there is a β model of GBC + Π1
n-CA. Then, τn � βn.

See figure 2.5 for a pictorial representation of these theorems.

Proof of theorem 2.67. Let m < n ≤ ω. We need to see that βm � τn.
Consider (N,Y) |= GBC + Π1

n-CA with OrdN = τn. Then, by the existence of Σ1
m-truth predicates in

(N,Y) we get C ∈ Y coding X̄ ⊆ Y so that (N, X̄ ) |= GBC + Π1
m-CA. Work in (N,Y). Apply reflection to

this C to get a club of ordinals α with Cα ⊆ Vα coding Xα ⊆ P(Vα) so that (Vα,Xα) |= GBC + Π1
m-CA.

Pick α with uncountable cofinality from this club. Then N |= (Vα,Xα) is a β-model because any transitive
model with uncountable cofinality is a β-model.16 But N is a transitive model of ZFC so it is correct about
well-foundedness, so (V Nα ,Xα) really is a β-model.

This establishes that βm < τn. To further see that βm � τn observe that N sees the unrolling W̄ of the
model of GBC + Π1

m-CA + Σ1
m-CC contained inside (V Nα ,Xα). But then this W̄ has a countable (from the

perspective of N) submodel W . Cutting off this W gives a countable β-model of GBC + Π1
m-CA.

Proof of theorem 2.68. Fix n with 1 ≤ n ≤ ω. We want to see that τn � βn. Let Hn(α) denote Lξ where
ξ > α is least so that Lξ |= ZFC−(n).17 And let Hyp(α) be the least admissible set containing α, i.e. Lξ
where ξ > α is least so that Lξ |= KP. It is then obvious that Hyp(α) ⊆ Hn(α). Consider the admissible
sets A = Hyp(βn) and B = Hn(βn). Consider the LA-theory18 T whose axioms consist of

• ZFC−I (n);

15See subsection 2.1.1 for discussion of why we need the alternate translation.
16See observation 1.14.
17Following the naming convention of definition 2.1, ZFC−(n) is the theory axiomatized by Extensionality, Pairing, Union,

Foundation, Infinity, Choice, Σn-Separation, and Σn-Collection. So, for instance, ZFC−(0) is KP plus Choice plus Infinity.
18Recall that if A is an admissible set then LA is the admissible fragment of LOrd,ω associated with A, i.e. the infinitary

language consisting of formulae in A. See [Bar75] for details.



CHAPTER 2. MANY CONSTRUCTIONS 56

• The infinitary ∈-diagram of A;19 and

• The assertion that βn is inaccessible.

Then T is Σ1-definable over A via a formula θ. I claim that B |= T and thus T is consistent. First, it is
clear that A ∈ B and B |= ZFC−(n). What remains is to see that B |= βn is inaccessible. To see this, let
(Lβn ,X ) be a β-model of GBC+ Π1

n-CA+ Σ1
n-CC, whose classes are all constructible. Then (Lβn ,X ) unrolls

to a transitive model Lξ |= ZFC−I (n) with βn ∈ Lξ inaccessible and the largest cardinal of Lξ. By definition

of B, we have that OrdB ≤ ξ. So B must agree with Lξ that βn is inaccessible and is the largest cardinal.
Thus, B |= T .20

It looks like we are setting up to apply the Barwise compactness theorem, but we are not yet ready to
do so. (Indeed, we will not apply the Barwise compactness theorem directly to T .) First, work in B. By
condensation there are countable (i.e. from the perspective of B) ordinals γ, δ so that j : (Lγ ,∈, δ)→ (A,∈
, βn) is an elementary embedding. Then, A |= γ is countable; this is true in B and the bijection from γ to ω
must occur earlier than βn in the L-hierarchy because A |= βn is inaccessible.

Now let T ′ be Lγ ’s version of T ; formally, T ′ = {ϕ : Lγ |= θ(ϕ)}. We can explicitly list the axioms of T ′,
namely:

• ZFC−I (n);

• The infinitary ∈-diagram of Lγ ; and

• The assertion that δ is inaccessible.

Because A |= Con(T ) we get by elementarity that Lγ |= Con(T ′). Also by elementarity, Lγ = Hyp(δ).
Finally we apply the Barwise compactness theorem, but within A to the theory T ′. This yields C ∈ A

with C |= T ′ and C ⊇end Lξ. So the same is true in V , by absoluteness. Applying the cutting off construction
to C we get that Lξ is (GBC + Π1

n-CA + Σ1
n-CC)-realizable. So τn ≤ δ � βn, as desired.

Essentially the same argument works for the version of the theories without Powerset, i.e. KM− and
GBC− + Π1

k-CA. Let β−ω be the least height of a β-model of KM− and τ−ω be the least height of a transitive
model of KM−. For k ∈ ω let β−k be the least height of a β-model of GBC− + Π1

k-CA and let τ−k be the least
height of a transitive model of GBC− + Π1

k-CA.

Theorem 2.69. Assume there is a β-model of KM−. Let n < m ≤ ω. Then the following hold.

• β−n � τ−m; and

• τ−n � β−n .

Proof sketch. Just like the proof of theorems 2.67 and 2.68. The difference is that when axiomatizing the
theory T use ZFC−R(n) rather than ZFC−I (n).

It is quite obvious that β−n � τm for any n,m ≤ ω. So the above picture could be extended by putting
the minus ordinals at the bottom, ordered the same but with superscripts everywhere.

We can ask the same question for other theories. For a second-order set theory T , let τ(T ) be the least
height of a transitive model of T and let β(T ) be the least height of a β-model of T .

Question 2.70. Do we have τ(GBC) < β(GBC)? Do we have τ(GBC + ETR) < β(GBC + ETR)?

19That is, the collection of all sentences of the form ∀x x ∈ a⇔
∨
b∈a x = b. Any structure which satisfies all these sentences

will have A as a transitive submodel. That is, if N satisfies all these sentences then A ⊆ N and for every a ∈ A and b ∈ N if
N |= b ∈ a then b ∈ A.

20If we think in terms of the GBC+ Π1
n-CA+ Σ1

n-CC model (Lβn ,X ), then what we have seen is that this structure contains
a membership code for Hyp(V ), the smallest admissible ‘set’ containing its V . See chapter 4 for more on Hyp(V ), where it will
play an important role.



Chapter 3

Truth and transfinite recursion

Die alte und berühmte Frage, womit man die
Logiker in die Enge zu treiben vermeinte und
sie dahin zu bringen suchte, dass sie sich
entweder auf einer elenden Diallele mussten
betreffen lassen oder ihre Unwissenheit,
mithin die Eitelkeit ihrer ganzen Kunst
bekennen sollten, ist diese: Was ist Wahrheit?

Immanuel Kant

In this chapter I will explicate the relationship between transfinite recursion and iterated truth predicates.
This will be used to separate fragments of ETR and Σ1

k-TR. (See definition 3.39 below, and note that Σ1
0-

Transfinite Recursion is a synonym for Elementary Transfinite Recursion.) The main result of this chapter
is the following.

Theorem 3.1. Consider (M,X ) |= GBC and Γ ∈ X a well-order with Γ ≥ ωω. Fix finite k ≥ 0. Then, if
(M,X ) satisfies the Σ1

k-Transfinite Recursion principle for recursions of height ≤ Γ ·ω, there is Y ⊆ X coded
in X so that (M,Y) |= GBC plus the Σ1

k-Transfinite Recursion principle for recursions of height ≤ Γ.

This theorem gives a separation of fragments of Σ1
k-Transfinite Recursion by consistency strength.

Combined with the easy facts that Π1
k+1-Comprehension proves Σ1

k-Transfinite Recursion and that Σ1
k+1-

Transfinite Recursion for recursions of finite length proves Π1
k-Comprehension, this gives a hierarchy of

transfinite recursion principles ranging in strength from GBC to KM. Figure 3.1 gives a visual representation
of the hierarchy of the second-order transfinite induction principles, spanning from GBC to KM.

This chapter is organized as follows. First, we consider iterated truth predicates and see that (fragments
of) Elementary Transfinite Recursion can be equivalently formulated as asserting the existence of certain
iterated truth predicates. Next we look at the connections between iterated truth predicates and the second-
order constructible universe. This will show that GBC + ETR and GBC− + ETR go down to inner models,
completing the proof of theorem 2.47 from chapter 2. We will also see the same for fragments of ETR, though
by a different argument. We then settle theorem 3.1 for the case k = 0, separating fragments of ETR. We
further will see that fragments of ETR can be separated in a strong sense, getting transitive models of ZFC
satisfying a strong theory which are (GBC + ETRΓ)-realizable but not (GBC + ETRΓ·ω)-realizable. So the
separation here is due to an inherently second-order property of the model, not its (first-order) theory. This
is followed by a detour to arithmetic, where we consider an analogous situation for iterated truth predicates
over models of arithmetic. We see that the strong separation results for fragments of ETR do not have a
counterpart in the arithmetic realm. Finally, we turn to non-elementary recursion and settle the k ≥ 1 case
of theorem 3.1.

57
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ETR1

Open Class Determinacy

Clopen Class Determinacy

Class Forcing Theorem

GBC

– ETRω

– ETRγ

– ETROrd

– ETRΓ

– ETR

– Σ1
1-TR1Π1

1-CA

– Σ1
1-TRγ

– Σ1
1-TROrd

– Σ1
1-TRΓ

– Σ1
1-TR

...

– Σ1
k-TR1Π1

k-CA

– Σ1
k-TRγ

– Σ1
k-TROrd

– Σ1
k-TRΓ

– Σ1
k-TR

– Σ1
k+1-TR1Π1

k+1-CA

...

Σ1
ω-TRKM

Figure 3.1: Transfinite recursion, from GBC to KM. Ordered by consistency strength.
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Much of this chapter will make use of the constructions from chapter 2, so the reader is strongly encour-
aged to read that chapter first.

3.1 Truth and iterated truth

In chapter 1 we discussed truth predicates over models of set theory. I wish to return to this subject for a
deeper look. As we will see in this chapter, certain principles of second-order set theory can be characterized
in terms of the existence of truth predicates as classes. The best known case of such is the Tarskian truth
predicate for first-order formulae, which we saw in chapter 1. But we can also consider truth predicates
relative to a class parameter.

Definition 3.2. Let A be a class over a model M of first-order set theory. The truth predicate for M relative
to A—or, synonymously, the satisfaction class for M relative to A—is the class T satisfying the recursive
Tarskian definition of truth for formulae in the language L∈(A), i.e. the language of first-order set theory
with a symbol for A. Formally, these recursive requirements are the same as in definition 1.53, with the
following addition:

• (x ∈ A, a) is in T if and only if a ∈ A.

Observation 3.3. Let (M,X ) |= GBc−. If T, T ′ ∈ X both satisfy the definition of a truth predicate relative
to A ∈ X then T = T ′.

Proof. If T 6= T ′ then they disagree at a minimal stage. But this would contradict the recursive requirement
at that stage.

As such, we are justified in talking about the truth predicate relative to A.1 I will use Tr(A) to denote
the truth predicate relative to A.

As a first application of this idea, let us see that there is no principal model of GBC + ETR.

Proposition 3.4. Let (M,X ) be a model of second-order set theory. If for every A ∈ X we have Tr(A) ∈ X
then (M,X ) is not principal.

Proof. Otherwise, if X = Def(M ;P ) for some P ∈M then Tr(P ) is definable from P , contradicting Tarski’s
theorem on the undefinability of truth.

Proposition 3.5. The theory GBC− + ETRω proves that Tr(A) exists for every class A.

Proof. From A we can define Tr(A) by means of an elementary transfinite recursion of height ω. See
definitions 3.2 and 1.53.

Corollary 3.6. No model of any T ⊇ GBC− + ETRω is principal.

Proposition 3.5 gives that every model of GBC− + ETRω contains truth predicates. This includes non-ω-
models, so it would be helpful to discuss what that means in this context.

The trouble is simple. Consider a ω-nonstandard model M and its externally defined satisfaction relation
S = {(ϕ, a) : M |= ϕ(a)}. This S will only include standard formulae in its domain, so it cannot be
amenable to M . So this cannot be the class in X which (M,X ) thinks is the truth predicate if X is to be
a (GBC− + ETRω)-realization for M . Instead, the class in X which (M,X ) thinks is the truth predicate
must measure the ‘truth’ of all formulae in M , including the nonstandard formulae. In the literature on
nonstandard models, such a class is also known as a full satisfaction class.

Let us step away for a moment from the context of second-order set theory. Classical results of Krajewski
[Kra76] show that full satisfaction classes can be non-unique, in contrast to the uniqueness of truth predicates
in the second-order context. If M is a countable ω-nonstandard model of, say, ZFC which admits a full

1The reader who is familiar with satisfaction classes over non-ω-models may want to object here. She should hold her
objection. We will discuss that case shortly.



CHAPTER 3. TRUTH AND TRANSFINITE RECURSION 60

satisfaction class then it admits continuum many different full satisfaction classes. But the disagreement
must be confined to the nonstandard realm. An easy induction shows that any full satisfaction class for M
agrees with the truth predicate of M (as seen externally from V ) for standard formulae.

This implies that for ω-nonstandard models M of set theory we can have different GBC−-realizations for
M which contain different truth predicates. On the other hand, ifM is ω-standard and two GBC−-realizations
for M each contain a truth predicate then their truth predicates are the same.

Let us return now to truth predicates relative to a class parameter. Suppose for the moment that we have
a model of, say, GBC satisfying ∀A Tr(A) exists. In particular this holds when A itself is a truth predicate.
So we can talk about truth about truth, truth about truth about truth, and so on. It is easy to see that this
gives us nth order truth for every standard n.

But we are set theorists here. Our inclination is to extend things to the transfinite. We would like to
do that for truth about truth about. . . Formally, this is captured by the following definition of an iterated
truth predicate. Informally, an iterated truth predicate is a class of triples (γ, ϕ, ā) so that ϕ(ā) is true at
level γ, where ϕ is allowed to make reference to level < γ.

Definition 3.7. Let (M,X ) be a model of second-order set theory with Γ ∈ X a well-order. An iterated
truth predicate of length Γ (or, synonymously, a Γ-iterated truth predicate2) for M is a class T of triples
(γ, ϕ, ā) with γ ∈ dom Γ satisfying the following recursive requirements. Here, ϕ is in L∈(T), the language
of set theory augmented with a trinary predicate T, and ā is a valuation for ϕ.

1. (γ, x = y, ā) is in T if and only if ax = ay.3

2. (γ, x ∈ y, ā) is in T if and only if ax ∈ ay.

3. (γ,T(x, y, z), ā) is in T if and only if

• ax <Γ γ;

• ay is an L∈(T)-formula;

• az is a valuation for ay; and

• (ax, ay, az) is in T .

4. (γ, ϕ ∨ ψ, ā) is in T if and only if (γ, ϕ, ā) or (γ, ψ, ā) are in T .

5. (γ,¬ϕ, ā) is in T if and only if (γ, ϕ, ā) is not in T .

6. (γ,∃x ϕ(x), ā) is in T if and only if there is b ∈M so that (γ, ϕ, baā) is in T .4

We can also have iterated truth predicates relative to a class parameter A. This has the same definition,
except that the formulae must be in the language L∈(T, A) and the following additional criterion must be
satisfied:

• (γ, x ∈ A, a) is in T if and only if a ∈ A.

2The reader may now see one advantage of using “truth predicate” in place of “full satisfaction class”, even in the ω-
nonstandard case. The latter would then lead to talk of iterated full satisfaction classes, which is a mouthful—as can be
attested by anyone who has given a talk about iterated truth predicates where he made the mistake of using the wrong
terminology.

3To clarify the notation: if ā is a valuation with variable x in its domain, then ax is the value assigned to x.
4Here we of course have the implicit requirement that x be free in ϕ.

To clarify the situation with the valuations: By baā I mean the valuation which modifies ā by assigning x the value b. Note
that it could be that ā already assigns x a value, as there is no requirement that our valuations only assign values to free
variables which appear in the formula. (Indeed, clause (4) of this definition will imply that this always happens; consider e.g.
the formula ϕ given by x = x∨y = y. Then (γ, ϕ, 〈ax, ay〉) ∈ T if and only if (γ, x = x, 〈ax, ay〉) ∈ T or (γ, y = y, 〈ax, ay〉) ∈ T .)
So if ā does not assign x a value then baā extends ā by assigning b to x. Otherwise, if ā does assign x a value, then we get baā
by dropping that assignment from ā and then adding in the assignment of b to x.

In the sequel I will avoid repeating this footnote, but the reader should keep these issues in mind.
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Note that the property of being the Γ-iterated truth predicate relative to A is first-order expressible (in
parameters Γ and A). So if (M,X ) and (M,Y) are GBcm models which both contain T,Γ, A then they agree
on whether T is the Γ-iterated truth predicate relative to A.

The following observation generalizes observation 3.3 and is proved in the same manner. It justifies talk
of the Γ-iterated truth predicate.

Observation 3.8. Let (M,X ) |= GBc− with Γ ∈ X a well-order. Suppose T, T ′ ∈ X both satisfy the
definition of a Γ-iterated truth predicate. Then T = T ′. The same fact holds for iterated truth predicates
relative to a parameter.

I will use TrΓ(A) to refer to the Γ-iterated truth predicate relative to A and TrΓ to refer to the parameter-
free Γ-iterated truth predicate. Observe that Tr1(A) and Tr(A), the ordinary Tarskian truth predicate
relative to A, are inter-definable.

Note that if Γ is (standard) finite, then the existence of TrΓ(A) is equivalent to the existence of certain
ordinary truth predicates. That is, for standard finite n we have Trn(A) exists if and only if T1 = Tr(A),
T2 = Tr(T1), . . . , Tn = Tr(Tn−1) all exist. So the main interest in iterated truth is when the length is
transfinite or nonstandard finite.

Finally, let me address the skeptic. She may worry there is danger in allowing the iterated truth predicate
to measure the truth of statements that themselves make reference to the iterated truth predicate, thus
allowing the liar’s paradox to slip in. This worry is unfounded. Clause (3) in the definition of an iterated
truth predicate legislates that it be ramified, with truth at level γ unable to make reference to truth at level
≥ γ. So any vicious circles are avoided.

We are now ready to begin to see why the word “recursion” is in the title of this chapter. Namely,
the existence of iterated truth predicates gives an equivalent characterization of Elementary Transfinite
Recursion.

Theorem 3.9 (Fujimoto [Fuj12]). The following are equivalent over GBC.

1. The principle of Elementary Transfinite Recursion; and

2. For all class well-orders Γ and all classes A the class TrΓ(A) exists.

Proof. (1⇒ 2) Note that TrΓ(A) is definable via an elementary transfinite recursion of rank ω ·Γ. To define
truth at level g ∈ dom Γ requires to have first defined truth at all levels < g and each level is defined via a
recursion of rank ω.

(2 ⇒ 1) Take an instance of ETR, iterating ϕ(x, i, F,A) along a well-order Γ. I claim that from TrΓ(A)
can be defined a solution F to this recursion. Specifically, let F = {(i, x) : (i, ψ, x) ∈ TrΓ(A)}, where ψ is
a formula so that (M,∈, P,TrΓ�i(A)) |= ψ(x, i) if and only if (M,∈, P, F � i) |= ϕ(x, i). (For the latter, F
is defined via ψ as above.) Such ψ exists by an application of the Gödel fixed-point lemma. It then follows
that F satisfies ϕ at each stage and is therefore a solution to the full recursion.

This result can be refined to give equivalences for fragments of ETR.

Corollary 3.10. Let Γ ≥ ωω be a well-order. Over GBC the following are equivalent.

1. The principle of Elementary Transfinite Recursion for recursions of rank ≤ Γ; and

2. For all classes A the class TrΓ(A) exists.

Proof. (1 ⇒ 2) Again, TrΓ(A) is definable by a recursion of rank ω · Γ. While it may be that Γ < ω · Γ,
because ωω ≤ Γ it must be that ω · Γ < Γ + Γ. So we can carry out this recursion as we can get solutions to
recursions of rank Γ + Γ by first getting a solution to the first Γ many stages, then doing a second recursion
to get the rest.

(2⇒ 1) The same argument goes through as before.

This also implies that GBC + ETR and GBC + ETRΓ are finitely axiomatizable.
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Corollary 3.11. The theories GBC + ETR and GBC + ETRΓ are finitely axiomatizable, for Γ ≥ ωω.

Proof. Recall the folklore result that GBC is finitely axiomatizable. Hence the only work is to see that
Elementary Transfinite Recursion (or Elementary Transfinite Recursion restricted to Γ) is finitely axioma-
tizable. But as Fujimoto’s theorem shows, Elementary Transfinite Recursion is equivalent to ∀A∀Γ TrΓ(A)
exists. Similarly, Elementary Transfinite Recursion restricted to Γ is equivalent to ∀A TrΓ(A) exists.

3.2 Iterated truth and constructibility

The purpose of this section is to explicate the connection between iterated truth predicates and constructabil-
ity in the second-order realm.

As a warm-up, let us first see that Tr(A) gives a code for Def(M ;A).

Proposition 3.12. Suppose (M,X ) |= GBc− is an ω-model with A ∈ X . Then if Tr(A) is in X we get that
Def(M ;A) is coded in X . In particular, if X contains a truth predicate then it contains a coded V -submodel.

Proof. Because M is ω-standard Tr(A) = {(ϕ, ā) : (M,A) |= ϕ(ā)}. The following class, which is first-order
definable from Tr(A), is a code for Def(M ;A):{(

(ϕ, ā), b
)

: (ϕ, āab) ∈ Tr(A) and ϕ(ā) has a single free variable
}
.

For possibly ω-nonstandard models we can do the same coding to get access to what (M,X ) thinks are

the definable classes. I will use Def(M,X )(M ;A), for A ∈ X , to refer to the hyperclass coded by{(
(ϕ, ā), b

)
: (ϕ, āab) ∈ Tr(A) and ϕ(ā) has a single free variable

}
.

Of course, this can only be done if (M,X ) |= Tr(A) exists. If M is ω-standard then Def(M,X )(M ;A) =

Def(M ;A). But if M is ω-nonstandard then we get that Def(M,X )(M ;A) ) Def(M ;A).
Indeed, over GBC, the existence of coded V -submodels is equivalent to the existence of truth predicates.

Proposition 3.13. Let (M,X ) |= GBC. Then the following are equivalent.

1. For all A ∈ X we have Tr(A) ∈ X ; and

2. For all A ∈ X there is a coded V -submodel (M,Y) |= GBC of (M,X ) with A ∈ Y.

Proof. (1⇒ 2) We saw earlier that we have a coded V -submodel of GBc. Specifically, the model (M,Def(M,X )(M ;A))

is coded in X . We want to see that we can get Global Choice. Because Def(M,X )(M ;A) is coded in X we
have in X uniform access to the dense subclasses of Add(Ord, 1) which appear in Def(M ;A). (We also get
dense subclasses which (M,X ) thinks are defined by nonstandard formulae, but the important thing is that
we get all the dense subclasses defined by standard formulae.) So inside (M,X ) we can line them up in

ordertype Ord to find C ∈ X which meets each of them. Then (M,Def(M,X )(M ;A,C)) |= GBC is coded in
X .

(2⇒ 1) Fix A and let C be a code for a GBC-realization Y for M which contains A. Then, by reflection,
there are club many ordinals α so that (VMα , Ā, C̄) ≺Σ1 (M,A,C), where Ā = A ∩ VMα and C̄ = C ∩ VMα .
I claim that (VMα , Ā) ≺ (M,A). We can see this by the Tarski–Vaught test. The setup is we assume by
induction that we know Σn-elementarity and we would like to show Σn+1-elementarity. We fix a Σn+1-
formula ∃x ϕ(x, p, Ȧ), where Ȧ is a predicate symbol for A or Ā as appropriate. Assume there is x ∈ M so
that ϕ(x, p, Ā) holds for p ∈ VMα . We would like to find such an x′ in VMα . But {x ∈ M : M |= ϕ(x, p,A)}
is (C)y for some y. So by Σ1-elementarity W = {x ∈ VMα : VMα |= ϕ(x, p, Ā)} is (C̄)y for some y. And by
Σ1-elementarity it is nonempty. So pick x′ ∈W and we are done.

This then gives us Tr(A) as a class. Namely, to decide whether (ϕ, ā) ∈ Tr(A) look at some large
enough α from this club so that VMα can see all the parameters. Then say that (ϕ, ā) ∈ Tr(A) if and
only if (VMα , Ā) |= ϕ(ā). Because (what M thinks is) the satisfaction relation for (Vα, Ā) satisfies the
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recursive Tarskian requirements, so will Tr(A). This definition is first-order in the parameters A and C, so
by Elementary Comprehension Tr(A) ∈ X .

This lays bare the basic idea behind this section: iterating the Def operation is essentially the same thing
as iterating a truth predicate.

Let us now move to the main result of this section.

Theorem 3.14. The following are equivalent over GBC−.

1. The principle of elementary transfinite recursion.

2. For any class A and any well-order Γ the iterated truth predicate TrΓ(A) exists.

3. For any class A and any well-order Γ the membership code LΓ(A) exists.5

Proof. We have already seen (1⇔ 2). The new content is (1⇒ 3) and (3⇒ 2).
(1⇒ 3) We saw this back in chapter 2. Briefly: fix A and Γ. Then LΓ(A) is constructed via an elementary

recursion of height ω · Γ. It takes ω many steps to construct (a membership code for) Def(X) from X and
this must be done Γ many times to get LΓ(A).

(3⇒ 2) This essentially comes down to the fact that Lγ+2 contains the truth predicate for Lγ . Fix a class

A. Work in the (M,A)-constructible unrolling L(M,A). Inductively see that Tr(M,A)
γ —the γ-iterated truth

predicate for the structure (M,∈M , A)—appears in Lγ+γ(M,A); if Tr
(M,A)
δ is in Lβ(M,A) then Tr(Tr

(M,A)
δ )

is in Lβ+2(M,A), from which we can define Tr
(M,A)
δ+1 . Now given Γ ∈ X let γ ∈ L(M,A) be isomorphic to Γ.

Then we can transform Tr(M,A)
γ into TrΓ(A) ∈ X , as desired.

Corollary 3.15. If (M,X ) |= GBC− + ETR and N ∈ X is an inner model of M of ZFC then N is
(GBC− + ETR)-realizable. In particular, if (M,X ) |= GBC + ETR then N is (GBC + ETR)-realizable.

Proof. Fix G ∈ X a GBC−-amenable global well-order of N . Such exists by lemma 2.53. By the theorem,
LΓ(N,G) exists in X for all Γ ∈ X . So we can work in the (N,G)-constructible unrolling L(N,G), i.e. the
structure consisting of all membership codes E—quotiented out by isomorphism—E so that E ε LΓ(N,G)
for some Γ.6 Now let Y = L(N,G). That is, Y consists of the classes of N which are coded by membership
codes in L(N,G). It is immediate that (N,Y) |= GBC−. We want to see that it also satisfies ETR. Fix
A,Γ ∈ Y where (N,Y) |= Γ is a well-order. Then, it must be that (M,X ) agrees that Γ is a well-order.
Otherwise, there is an ordinal α ∈ M so that M |= Γ � F ′′α is ill-founded, where F ∈ Y is a bijection
between Ord and dom Γ, which exists by Global Choice. But by Replacement Γ � F ′′α must be in N . And
N is a transitive submodel of M and they are both models of ZFC−, so they must agree on what sets are
well-founded. So N |= Γ � F ′′α is ill-founded, so (N,Y) |= Γ is ill-founded, a contradiction.

Then there is some ∆ ∈ X so that A,Γ are coded in L∆(N,G). More formally, EA and EΓ, the
canonical membership codes for A and Γ, are ε-elements of L∆(N,G). But then LΓ(A) ε L∆+Γ+1(N,G). So
LΓ(A) ∈ Y. Since this worked for arbitrary A and Γ, we get by the theorem that (N,Y) |= ETR, completing
the argument.

Let us now turn to ETRΓ. We get that GBC + ETRΓ goes down to inner models, but we need a different
argument. The trouble is that without satisfying full ETR it is not clear that the unrolling process gives a
model of a sensible theory, so how are we to build second-order L? (Cf. subsection 2.1.2.)

Theorem 3.16. Let (M,X ) |= GBC− and let N ∈ X be an inner model of M . Suppose Γ ∈ X is a well-order
≥ ωω and is a GBC-amenable subclass of N so that (M,X ) |= GBC− + ETRΓ. Then N is (GBC− + ETRΓ)-
realizable, via some Y ⊆ X .

5See chapter 2 for a definition of LΓ(A).
6See chapter 2 for a definition of ε the membership relation between membership codes.
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Recall that “(N,Y) |= ETRΓ” only makes sense when Γ ∈ Y is a well-order. (You can express it as a
theory in first-order logic by using a parameter for Γ.) So in order to have N be (GBC+ ETRΓ)-realizable it
must be that Γ can be put into the classes for N . The condition that Γ be GBC−-amenable for N ensures
this can happen. Otherwise, you can run into pathologies. For example, if N = LM and Γ codes 0], then Γ
is not GBC-amenable to N .

And of course, if M is a model of Powerset then N must also be a model of Powerset, so this shows that
being (GBC + ETRΓ)-realizable goes down to inner models.

Proof. Fix G ∈ X a bijection OrdM → N which is GBC−-amenable to N . (See lemma 2.53.) We define Y an
ETRΓ-realization for N as a certain subset of X , built as a union of an ω-chain of GBC−-realizations for N .
Start with Y0 = Def(M,X )(N ;G,Γ). Then Y0 is coded in X because X has a truth predicate for N relative
to G and Γ. Also, note that (N,Y0) |= Γ is a well-order; otherwise, (M,X ) would also see the witness that Γ
is ill-founded, contradicting that (M,X ) |= Γ is a well-order. Observe that (N,Y0) |= GBC−. Now, given Yn
let Yn+1 be the smallest extension of Yn which contains all Γ-iterated truth predicates relative to parameters
from Yn. Formally,

Yn+1 =
⋃{

Def(M,X )
(
N ;
(
TrΓ(A)N

)(M,X )
)

: A ∈ Yn
}
.

Some remarks are in order. First, because Yn is coded in X , so is Yn+1. Second, it must be addressed what
this iterated truth predicate is. By way of a transfinite induction of height ω ·Γ, our model (M,X ) can build
what it thinks is the Γ-iterated truth predicate for N , relative to a parameter. This is (TrΓ(A)N )(M,X ).

Finally, set Y =
⋃
n∈ω Yn. We know that (N,Y) |= GBC−, because Y is the union of an increasing chain

of GBC−-realizations for N . We now want to see that (N,Y) |= ETRΓ. Fix A ∈ Y. Then A ∈ Yn for some
n. Thus

TrΓ(A)(N,Y) = (TrΓ(A)N )(M,X ) ∈ Yn+1 ⊆ Y.

So (N,Y) contains TrΓ(A) for all A ∈ Y, as desired.

A similar strategy can be used to show that GBC + ETR is closed under inner models, rather than going
through second-order L. For full ETR, however, to build Yn+1 we want to include iterated truth predicates
of all lengths in Yn, not just those of length Γ. We will also see a version of this construction reappear in
chapter 4.

3.3 Separating levels of ETR

In this section we will see that the levels of ETR form a hierarchy in consistency strength.
Let us begin with a lemma that GBC + ETRΓ proves well-order comparability for Γ. That is, if ∆ is any

well-order then exactly one of the following holds: ∆ < Γ, ∆ = Γ, or ∆ > Γ.7 This is a refinement of the
fact that ETR proves that any two class well-orders are comparable.

Lemma 3.17. The theory GBC+ETRΓ proves that Γ is comparable to any class well-order. That is, if ∆ is
a class well-order then either there is an embedding of Γ onto an initial segment of ∆ or else an embedding
of ∆ onto an initial segment of Γ.

Proof. Fix ∆. Consider the transfinite recursion which attempts to construct an embedding of Γ onto an
initial segment of ∆. That is, this recursion builds such an embedding π according to the following rule: for
g ∈ dom Γ set π(g) to be the least element of dom ∆ \ ran(π � (Γ � <Γg)), if such exists, otherwise π(g) is
undefined. There are two cases. If π(g) is always defined then we have embedded Γ onto an initial segment
of ∆. If π(g) is ever undefined at a stage then it will be undefined at every subsequent stage. So we get that
π−1 embeds ∆ onto an initial segment of Γ.

It is clear that if ∆ < Γ then ETRΓ implies ETR∆. But if ∆ and Γ are sufficiently close then they are in
fact equivalent. For instance, ETR∆ is equivalent (over GBC) to ETR∆+∆ because to carry out a recursion

7If ∆ and Γ are class well-orders then ∆ ≤ Γ if there is an embedding of ∆ onto an initial segment of Γ.
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of height ∆ + ∆ one first carries out a recursion of height ∆, then using the solution of such as a parameter
carries out a second recursion of height ∆. In general, ETR∆ is equivalent to ETR∆·n for any standard n > 0.

This does not generalize from n to ω.

Theorem 3.18. Suppose (M,X ) |= GBC− + ETRΓ for Γ ∈ X a class well-order ≥ ωω and let ∆ ∈ X
be a class well-order such that ∆ · ω ≤ Γ. Then, there is (M,Y) a coded V -submodel of (M,X ) so that
(M,Y) |= GBC− + ETR∆.

Proof. Fix G ∈ X a bijection OrdM → M . Consider T∆·ω(G) which is in X because it can be constructed
via an elementary recursion of rank (ω ·∆) · ω ≤ Γ. Now let Y consist of all sets (internally) definable from
an initial segment of T∆·ω(G). That is

Y = {Y : Y ∈ Def(M,X )(M ;TΥ(G)) for some Υ < ∆ · ω}.

Then Y is coded in X by using T∆·ω(G).
It is immediate that (M,Y) satisfies Extensionality, Replacement, and Global Choice. It satisfies First-

order Comprehension because Y is an increasing union of GBC−-realizations, namely the Def(M ;TΥ(G)) for
Υ < ∆ · ω. Finally, it satisfies ETR∆ because if A ∈ Y then A ∈ Def(M ;TΥ(G)) for some Υ < ∆ · ω and
thus Tr∆(A) ∈ Def(M ;TΥ+∆(G)) ⊆ Y.

This establishes theorem 3.1 for the GBC + ETR case.
As an immediate corollary we get that levels of ETR can be separated by consistency strength.

Corollary 3.19. Let (M,X ) |= GBC and suppose Γ ∈ X is a well-order ≥ ωω. Then if (M,X ) |= ETRΓ·ω
we have that (M,X ) |= Con(GBC + ETRΓ).

There is also a version of this corollary for GBC−.
To turn this into a statement about theories in L∈, i.e. the language of set theory without any names

for distinguished well-orders, we need that Γ is definable. Moreover, in order for (M,X ) to agree with its
V -submodels as to what Γ is we need that Γ is defined by a first-order formula (without parameters). So
we can say that, for instance, GBC + ETR ` Con(GBC + ETROrd), where both theories are in L∈. See the
discussion in section 4.4 for further details.

The proof for theorem 3.18 also separates ETRΓ and ETR<Γ for Γ closed under addition.

Definition 3.20. Let (M,X ) |= GBC− and suppose Γ ∈ X is a well-order. Then (M,X ) |= ETR<Γ if it
satisfies ETR∆ for all ∆ < Γ.

Theorem 3.21. Suppose (M,X ) |= GBC− + ETRΓ for Γ ∈ X a well-order ≥ ωω so that ∆ + ∆ < Γ for all
∆ < Γ. Then, (M,X ) has a coded V -submodel (M,Y) |= ETR<Γ.

Proof sketch. Similar to the proof of theorem 3.18, but set

Y = {Y : Y ∈ Def(M,X )(M ;TΥ(G)) for some Υ < Γ}

where G ∈ X is some bijection OrdM →M . Then (M,Y) |= ETR<Γ.

Confining one’s attention to transitive models (or, more broadly, ω-standard models) this is the end of
the story. For any standard n we have that ETRΓ is equivalent to ETRΓ·n so ETRΓ is equivalent to ETR<Γ·ω
for models with the correct ω. But if a model has ill-founded ω then there is a gap. Can an intermediate
theory be found in this gap?

The answer is yes.
Fix (M,X ) |= GBC+ETRΓ·ω an ω-nonstandard model where Γ ∈ X so that (M,X ) |= Γ is well-founded.

Given Y ⊆ X define the Γ-recursion cut for Y to be IΓ(Y) = {e ∈ ωM : (M,Y) |= GBC + ETRΓ·e}. Note
that IΓ(Y) must be closed under addition, as being closed under multiplication by standard n is equivalent
to being closed under addition. This is the only restriction on what IΓ(Y) can be.
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Theorem 3.22. Let (M,X ) |= GBC + ETRΓ·ω be ω-nonstandard where Γ ∈ X is well-founded according to
(M,X ). Let I ⊆ ωM be a cut closed under addition. Then there is Y ⊆ X so that IΓ(Y) = I.

Observe that, unlike for theorem 3.18, Y cannot be coded in X as then (M,X ) could define I, which is
impossible.

Proof. Fix G ∈ X a global well-order of M . Set

Y =
⋃
e∈I

Def(M ; (TrΓ·e(G))(M,X ).

A comment is in order. Because M is ω-nonstandard it in general can admit multiple incompatible full
satisfaction classes. So (Γ · e)-iterated full satisfaction classes will not be unique. Nevertheless, (M,X ) will
have at most one ∆-iterated truth predicate relative to a given parameter, because iterated truth predicates
are unique in a fixed second-order model. So (TrΓ·e(G))(M,X ) is well-defined.

Note also that each Def(M ; (TrΓ·e(G))(M,X ) is a GBC-realization for M . Thus, because Y is the increasing
union of these GBC-realizations it too must be a GBC-realization. It remains only to check that (M,Y) |=
ETRΓ·e if and only if e ∈ I. The backward direction of this implication is immediate from the definition of
Y.

For the forward direction, take a > I. Suppose towards a contradiction that (M,Y) |= ETRΓ·a. Then Y
has (what it thinks is) TrΓ·a(G). But then TrΓ·a(G) is definable from TrΓ·e(G) for some e ∈ I. In particular,
this means that TrΓ·e+1(G) is definable from TrΓ·e(G), contradicting Tarski’s theorem on the undefinability
of truth.

So while the separation between ETRΓ and ETRΓ·ω is optimal for ω-standard models, for ω-nonstandard
models there are always intermediate levels of ETR.

Let us return now to transitive models. Earlier when we separated ETRΓ from ETRΓ·ω we did so via the
second-order part of the model. Starting from (M,X ) |= GBC + ETRΓ·ω we found Y ⊆ X so that (M,Y)
satisfies ETRΓ but not ETRΓ·ω. So the separation is entirely due to which classes we allow in each model.

Can we separate ETRΓ and ETRΓ·ω via the first-order part of a model? Can we do so with a transitive
model? That is, can we find transitive M |= ZFC which is (GBC+ETRΓ)-realizable but not (GBC+ETRΓ·ω)-
realizable?

Yes we can, if Γ is a set, rather than a proper class.

Theorem 3.23. Let γ be an ordinal ≥ ωω given by a first-order definition. That is, there is a first-order
formula ϕ(x) without parameters so that ZFC proves ϕ(x) has a unique witness γ and this witness is an
ordinal ≥ ωω. Suppose there is a transitive model of ETRγ·ω. Then there is a transitive model of ZFC which
is (GBC + ETRγ)-realizable but not (GBC + ETRγ·ω)-realizable.

Proof. Take (M,X ) |= GBC + ETRγ·ω transitive with a definable global well-order. That such (M,X )

exists is a consequence of theorem 3.15. Let ~T =
〈
(Trδ)

M : δ < γM · ω
〉

be the sequence of δ-iterated truth

predicates for M for δ < γ · ω. Then ~T ∈ X because X contains (γ · ω)-iterated truth predicates. Now

let (N, γN , ~S) ≺ (M,γ(M,X ), ~T ) be the Skolem hull of the empty set, using the global well-order of M to

pick witnesses. Then, (N, γN , ~S) |= ~S consists of δ-iterated truth predicates for δ < γN . I claim that N is
(GBC + ETRγ)-realizable but not (GBC + ETRγ·ω)-realizable.

For the former, let Y = Def(N ; γN , ~S) consist of the subsets of N which are definable (with set parame-

ters) over the structure (N ; γN , ~S). It is immediate that (N,Y) satisfies Extensionality, Global Choice, and
First-Order Comprehension. Suppose towards a contradiction that (N,Y) does not satisfy Replacement.

Then there is F ∈ Y, defined from γN and ~S via a formula ϕ possibly with parameters, and a set a ∈ N so
that F ′′a 6∈ N . But then by elementary in (M,γM , ~T ) the formula ϕ defines a class function G and there
is a set b ∈ M so that G′′b 6∈ M . But then (M,X ) fails to satisfy Replacement, contradicting that it is a
model of GBC. Altogether we get that Y is a GBC-realization for N .
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Next let us see that (N,Y) |= ETRγ . But this is immediate; given any class A ∈ Y there is δ < γN so
that A is definable from Trδ so Trγ(A) is definable from Trδ+γ and hence Trγ(A) ∈ Y.

Finally, N cannot be (GBC + ETRγ·ω)-realizable because if Z were an (GBC + ETRγ·ω)-realization for
N then Z would contain Trγ·ω but then Z would see that N is a Skolem hull, hence countable. Note that
this uses that N is an ω-model, so that there is only one subset of N which can satisfy the definition of a
(γN · ω)-iterated truth predicate, namely the externally constructed one. But no model of GBC thinks its
first-order part is countable, so the existence of such Z is impossible.

Observe that we can ensure that γN = γM by requiring N to be the Skolem hull of, say, VMγ rather than
the Skolem hull of the empty set.

This theorem gives a strong separation for sufficiently weak fragments of ETR. The model N we con-
structed cannot be made into a model of ETRγ·ω not because it fails to have a compatible (first-order)
theory, but rather due to inherently second-order properties of the model. In the next section we will see
that this phenomenon depends essentially upon the transfinite; it does not occur for models of finite set
theory, equivalently models of arithmetic.

3.4 A detour through the finite realm

While my analysis has mainly been confined to models of set theory, analogous results are possible for models
of arithmetic. I wish to take a brief detour from the infinite world to consider the applications of these ideas
to the finite world.

Let me recall some standard facts about satisfaction classes for nonstandard models of arithmetic. First,
we will need a few definitions.

Definition 3.24. A structure M is resplendent if it realizes any consistent Σ1
1-formula. That is, if X̂ is a

new predicate symbol, ā are elements of M , and ϕ(X̂, ā) is consistent with Th(M, ā) then there is X ⊆ M
so that (M,X) |= ϕ(X̂, ā).

Further say that M is chronically resplendent if X may be chosen so that (M,X) is resplendent.

Definition 3.25. A structure M is recursively saturated if it realizes any consistent computable type. That
is, if p(x, ā) is a consistent type so that the set of formulae ϕ ∈ p form a computable subset of ω then there
is t ∈M so that M |= ϕ(t, ā) for all ϕ ∈ p.

I am primarily interested in structures which allow an appreciable amount of coding, such as models or
arithmetic or models of set theory. For such structures we can write down a formula ϕ(X̂) which asserts
that X̂ is a truth predicate. Every countable recursively saturated model admits a full satisfaction class—a
theorem of Kotlarski, Krajewski, and Lachlan [KSL81].8 So because every completion of PA has a countable
recursively saturated model we get that resplendent models admit full satisfaction classes. But note that
in general these models will not satisfy induction in the expanded language with a predicate for the full
satisfaction class, as induction in the expanded language allows one to prove Con(PA).

Theorem 3.26 (Lachlan [Lac81]). If M |= PA admits a full satisfaction class then M is recursively saturated.

For countable models all these notions are equivalent, but separations can happen in the uncountable.
Kaufmann [Kau77] produced recursively saturated, rather classless9 models. Combined with a theorem of
Smith’s [Smi89] that models with a full satisfaction class must have undefinable classes, this gives recursively
saturated models which do not admit a full satisfaction class.

Theorem 3.27 (Barwise–Schlipf [BS76]). If M is countable and recursively saturated then M is chronically
resplendent.

8But see [EV15] for a more elegant proof.
9M |= PA is rather classless if every class of M is definable, where A ⊆ M is a class if A ∩ [0, x)M is definable for every

x ∈M . Cf. definition 1.50.
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As an immediate consequence we get that countable resplendent models are chronically resplendent. It
is open whether this is true in general.

Question 3.28. Does resplendency always imply chronic resplendency?

Let us turn now to iterated full satisfaction classes10 over models of arithmetic. Essentially the same
argument that resplendent models admit full satisfaction classes yields that resplendent models admit iterated
full satisfaction classes. But that is not the only way to get models with iterated full satisfaction classes.
Another way goes through models of second-order arithmetic.

Recall that ATR0 is the theory of second-order arithmetic axiomatized by the following: PA for the
first-order part; Extensionality for sets; comprehension for arithmetical (i.e. first-order) properties; and
arithmetical transfinite recursion, asserting that inductions of arithmetical properties along a well-founded
relation have solutions. That is, ATR0 is the arithmetic counterpart to GBC + ETR. Many arguments from
GBC+ETR generalize to ATR0 and vice versa. One example is the construction of iterated truth predicates.
Let me give a definition specialized to this context, for the sake of clarity.

Definition 3.29. Let M |= PA and n ∈M . An iterated full satisfaction class of length n (or, synonymously,
an n-iterated full satisfaction class for M is a set T ⊆ M of triples11 (i, ϕ, ā) with i < n satisfying the
following recursive requirements. Here, ϕ is in LPA(T), the language of arithmetic augmented with a trinary
predicate T, and ā is a valuation for ϕ.

1. For atomic ϕ: (i, ϕ, ā) is in T if and only if ϕ given the values from ā is true.12

2. (i, x ∈ y, ā) is in T if and only if ax ∈ ay.

3. (i,T(x, y, z), ā) is in T if and only if

• ax < i;

• ay is an L∈(T)-formula;

• az is a valuation for ay; and

• (ax, ay, az) is in T .

4. (i, ϕ ∨ ψ, ā) is in T if and only if (i, ϕ, ā) or (i, ψ, ā) are in T .

5. (i,¬ϕ, ā) is in T if and only if (i, ϕ, ā) is not in T .

6. (i,∃x ϕ(x), ā) is in T if and only if there is b ∈M so that (i, ϕ, baā) is in T .13

We can also consider iterated full satisfaction classes of length ω (in the sense of the model) by allowing i to
be any element of the model, not just those < n.

In this section I will only consider iterated full satisfaction classes of length ≤ ω. One could consider
longer lengths, but the general theory requires additional care. In particular, “Γ is a well-order” is a second-
order assertion in the arithmetical case, so there are subtleties in formulating (M,Γ, S) |= “S is an iterated
full satisfaction class of length Γ” for Γ, S ⊆M .

10In this section and this section alone I will talk about iterated full satisfaction classes instead of iterated truth predicates.
We are not working in a second-order context so the uniqueness of iterated truth predicates within a second-order model does
not apply here. I wish to emphasize this change of perspective with a change of language. The exception to this choice is when
I talk about standard models, in which case the only possible choice of a full satisfaction class is the truth predicate for the
model, as seen externally.

11Recall that PA allows for the coding of sequences as single numbers, so we can think of T as a subset of M , rather than a
subset of M3.

12For example, 2 + 3 < 5 + 1 is declared true at every level < n, because 2 + 3 really is less than 5 + 1.
13Here we of course have the implicit requirement that x be free in ϕ.
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Observe that each step in the recursive requirements above is first-order. So ATR0 proves the existence
of iterated full satisfaction classes of all lengths ≤ ω. Moreover, these will be inductive14 iterated full
satisfaction classes, because any set in a model of ATR0 must be inductive.

Observe that not every resplendent M |= PA admits inductive iterated full satisfaction classes. This is a
consequence of the following observation.

Observation 3.30. If M |= PA admits an inductive iterated full satisfaction class of length n, possibly
nonstandard, then M |= Conn(PA). So if M admits an inductive iterated full satisfaction class of length ω
(in the sense of M), then M |= ∀n Conn(PA).

Proof. An inductive iterated full satisfaction class of length k + 1 allows one to get a completion of PA +
Conk(PA). But if the model can see a completion of T then it must think Con(T ).

In the previous section we considered transitive models of set theory which admitted GBC-amenable
iterated truth predicates of length η but not ones of longer lengths. Moreover, we could find such models
satisfying any extension T of ZFC which has a transitive model and is consistent with the existence of iterated
truth predicates of length η. See theorem 3.23. In particular, T could be the L∈-reduct of GBC + there is
an iterated truth predicate of length ζ, for ζ larger than η. Can we have the same phenomenon for models
of arithmetic? That is, for any T ⊇ PA can we find a model of T which admits an inductive full satisfaction
class of length η but not an inductive iterated full satisfaction class of length η + 1?

For the standard model, there is only one choice for a full satisfaction class, namely the truth predicate
for the model. But this will not work because N admits iterated truth predicates of any length and any class
over N is inductive. So we must look at nonstandard models.

Observation 3.31. Let M |= PA be countable and admit an inductive full satisfaction class. Then M
admits an inductive full satisfaction class of any length compatible with the theory of M . That is, if “S is
an inductive iterated full satisfaction class of length n” is consistent with Th(M) then there is S ⊆M which
is an inductive n-iterated full satisfaction class for M . (And similarly for length ω.)

Proof. Because M admits a full satisfaction class it must be recursively saturated. But since M is countable
and recursively saturated it is resplendent. So if “S is an inductive full satisfaction class of length n” is
consistent with Th(M) then there is S ⊆M realizing that theory. (And similarly for length ω.)

This observation tells us that for resplendent models the only way to rule out having an inductive iterated
full satisfaction class of length n is by the theory of the model. This is unlike the case for transitive models of
set theory, where we can find a model of any reasonable T so that the model does not admit a GBc-amenable
iterated truth predicate of length n.

If we want to find an inductive iterated full satisfaction class over M |= PA which cannot be extended to
a longer one then there are two ways to do such. One would be if (M,T ) is not recursively saturated for T
an inductive iterated full satisfaction class. Then (M,T ) does not admit a full satisfaction class, inductive
or otherwise. But this is a boring case. The more interesting case is when (M,T ) is recursively saturated
(which, for countable M , is equivalent to being resplendent). In this case the only potential obstacle is
Th(M,T ).

As a warm-up let us see that different full satisfaction classes can give different consequences in the
extended model.

Proposition 3.32. There is M |= PA with U, I ⊆M inductive full satisfaction classes so that Th(M,U) 6=
Th(M, I).

I learned of this argument from [HY14], where they attribute the argument to Schmerl.

14A set X ⊆M |= PA is inductive if (M,X) satisfies the induction schema in the expanded language. Equivalently, X ⊆M
is inductive if there is an ACA0-realization for M which contains X. Compare to GBc-amenability, definition 1.39.
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Proof. Consider the LPA(S) theory T = TA + “S is an inductive full satisfaction class, where TA = Th(N)
is true arithmetic. By a well-known fact from computability theory T is Turing-equivalent to 0(ω), the ω-th
iterate of the Turing jump of the empty set. However, Th(N,TA), which extends T , is Turing-equivalent to
0(ω+ω). So if T were complete then we would get 0(ω) ≡T 0(ω+ω), which is of course impossible. So T must
be incomplete. Now take TI and TU incompatible extensions of T . That is, TI ∪ TU is inconsistent while
each is individually consistent. Notice, though, that TI and TU have the same LPA consequences, namely
TA. So if M |= TA is resplendent then there are U, I ⊆M so that (M,U) |= TU and (M, I) |= TI . These are
the desired M , U , and I.

Note that the restricting U and I to ω both yield TA. So U and I agree on standard truth, but not
nonstandard truth. On the other hand, for truth about truth disagreement happens on the standard level.

Definition 3.33. For n ≤ ω let ITRn be the LPA(T ) theory asserting PA plus that T is an inductive full
satisfaction class of length n.15 Let itrn be the LPA consequences of ITRn.

With this definition in mind, the above observation can be phrased as: if M |= itrn is countable and
recursively saturated then M can be extended to a model of ITRn.

Definition 3.34. Let m < n ≤ ω. Let itrnm be the reduct of ITRn to language for a structure with an
m-iterated full satisfaction class. More formally, we can use an LPA(T )-formula to define an m-iterated full
satisfaction class from an n-iterated full satisfaction class by restricting to the first m levels of the iterated
full satisfaction class. Then itrnm is what ITRn proves about this reduct.

Theorem 3.35. Let M |= itr2 be nonstandard, countable, and recursively saturated. Then there are S, S′ ⊆
M so that the following hold:

• (M,S) and (M,S′) are recursively saturated;

• S and S′ are inductive full satisfaction classes;

• S can be extended to an inductive iterated full satisfaction class of length 2; and

• S′ cannot be extended in this way.

Proof. It is easy to find S. Just take an inductive iterated full satisfaction class of length 2 over M and
restrict it to get S. We can ensure (M,S) is recursively saturated because M is chronically resplendent. So
the work is in getting S′. This reduces to the following claim.

Claim 3.36. The theory itr21 is independent over Th(M) + ITR1.

Given the claim, find S′ by chronic resplendency to get a class over M so that the expansion satisfies
Th(M) + ITR1 but not itr21. So to finish the proof let us prove the claim. The basic idea is that having an
inductive full satisfaction class allows a model to get a handle of the theory of its arithmetic reduct, enabling
a diagonalization trick.

Consider the sentence Con(ITR1 +Tr), where Tr is a name for the full satisfaction class. This sentence can
be expressed in the language of ITR1, because ITR1 is computably axiomatizable and the full satisfaction class
gives access to Tr. Note that for any standard ϕ in the language of arithmetic and any (N,S) |= Th(M)+ITR1

we get that ϕ ∈ S if and only if ϕ ∈ Th(M). Clearly, ITR2 ` ϕ so itr21 ` ϕ. Let us see that Th(M) + ITR1

does not prove Con(ITR1 + Tr), which will then yield the claim. By the Gödel fixed-point lemma there is a
sentence ψ so that ITR1 proves

ψ ⇔ ∀x Pr
ITR1+Tr

(ψ, x)⇒ ∃y < x Pr
ITR1+Tr

(¬ψ, y)︸ ︷︷ ︸
=ρ(ψ)

15The reader should think iterated truth for ITR.
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where PrITR1+Tr(θ, x) asserts x codes a proof of θ from the axioms of ITR1 + Tr. It is immediate that
ITR1 proves ρ(ψ) ⇒ ¬Con(ITR1 + Tr). So ITR1 proves Con(ITR1 + Tr) ⇒ ¬ψ. Now suppose towards a
contradiction that Th(M) + ITR1 proves ¬ψ. Then there is a standard natural number which codes this
proof. Now work in a model of Th(M) + ITR1. Then, this model thinks that ITR1 + Tr proves ¬ρ(ψ), which
is equivalent to

∃x Pr
ITR1+Tr

(ψ, x) ∧ ∀y < x ¬ Pr
ITR1+Tr

(¬ψ, x).

There are two cases to consider, the first being the case that there is a witnessing x which is standard. Then
the proof coded by x could only use formulae from the standard part of Tr, which is Th(M). Thus we would
get a standard proof of ψ from Th(M) + ITR1, which would be a contradiction. The second case is then that
all witnessing x are nonstandard. But then ∀y < x ¬PrITR1+Tr(¬ψ, x) cannot be a theorem of ITR1 + Tr,
as there is a standard y which codes a proof of ¬ψ from Th(M) + ITR1, and so our model will think y
codes a proof of ¬ψ from ITR1 + Tr. In either case we get a contradiction, so our original assumption that
Th(M) + ITR1 proves ¬ψ must be false, and so it cannot prove Con(ITR1 + Tr). This completes the proof
of the claim, which completes the proof of theorem.

Krajewski’s methods give that there are continuum many such S and S′.
There is nothing special about about 1 and 2 in theorem 3.35. We can get the same result for m-iterated

full satisfaction classes and n-iterated full satisfaction classes for m ≤ n.

Theorem 3.37. Let M |= PA be countable and recursively saturated and m ≤ n ∈ M . Assume that
M |= itrn. Then there is S ⊆M so that

• (M,S) is recursively saturated;

• S is an inductive m-iterated full satisfaction class for M ; and

• S cannot be extended to an inductive (m+ 1)-iterated full satisfaction class.

Theorem 3.35 is a direct consequence of this result: apply it with m = n = 2 and with m = 1 and n = 2
to get, respectively, S and S′.

Proof sketch. If n = m this is easy. For n < m, use a similar Gödel–Rosser trick to show that itrnm is
independent over Th(M) + ITRm.

Again, Krajewski’s work implies that there are continuum many such S.

Corollary 3.38. Let M |= PA be countable and recursively saturated and k ≤ m < n ∈ M . Assume that
M |= itrn. Then there is S ⊆M so that

• (M,S) is recursively saturated;

• S is an inductive k-iterated full satisfaction class for M ; and

• S can be extended to an inductive m-iterated full satisfaction class but no further.

Proof. Apply the theorem, then restrict the m-iterated full satisfaction class to get a k-iterated full satisfac-
tion class.

Given countable and recursively saturated M |= PA we can form a tree consisting of the inductive iterated
full satisfaction classes over M . Namely, for m < n ∈M an m-iterated full satisfaction class Sm is before an
n-iterated full satisfaction class Sn in the tree if Sm is the restriction of Sn to the first m levels. The results
in this section tell us that this tree has lots of branches of all possible lengths.

For concreteness, suppose M |= itrω, i.e. the LPA-consequences of PA + “T is an inductive ω-iterated full
satisfaction class”. (Here, ω is in the sense of the model M .) The tree of inductive iterated full satisfaction
classes for M—see figure 3.2—has continuum many branches, coming from the continuum many inductive
ω-iterated full satisfaction classes. The above corollary implies that for any m < n ∈ m this tree has
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depth m

depth k

depth n

· · ·

Figure 3.2: The tree of inductive iterated full satisfaction classes over a model of arithmetic. The node at
depth m has continuum many extensions to leaf nodes of depth k.

continuum many nodes of depth m which extend to a node of depth n, but no further. Moreover, if a node
s of depth m has extensions to a node of depth n, then for any k between m and n we have that s has
continuum many extensions to a leaf node of depth k.

3.5 Non-elementary transfinite recursions

We now return to the infinite. We have investigated transfinite recursion for elementary properties. What
about second-order properties?

Definition 3.39. Let k be a natural number. We define the Σ1
k-transfinite Recursion schema Σ1

k-TR.
Instances of Σ1

k-Transfinite Recursion take the following form: let ϕ(x, Y, P ) be a Σ1
k-formula, possibly with

a class parameter P , and R be a well-founded class relation with transitive closure <R. The instance of
recursion for ϕ and R asserts that there is a class S ⊆ domR× V which satisfies

(S)r = {x : ϕ(x, S � r,A)}

for all r ∈ domR. Here, (S)r = {x : (r, x) ∈ S} denotes the r-th slice of S and

S � r = S ∩ ({r′ ∈ domR : r′ <R r} × V )

is the partial solution below r.
If Γ is a well-order then Σ1

k-TRΓ is the schema obtained by restricting Σ1
k-TR to only ask for solutions to

recursions of height ≤ Γ.

Note that Σ1
0-TR is another name for ETR.

Before wading into a finer analysis, let us put the Σ1
k-TR in the context of the more familiar Π1

k-CA.
First, an upper bound.

Proposition 3.40 (Over GBc−). Π1
k+1-CA proves Σ1

k-TR.
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Proof. Let R be a well-founded relation and ϕ be Σ1
k, possibly with parameters. By Comprehension form

the class {r ∈ domR : there is no partial solution of ϕ up to r}. This uses Π1
k+1-Comprehension because it

asserts there is no class satisfying the Σ1
k-property of being a partial solution to a Σ1

k-recursion. We want
to see this class is empty, so assume otherwise. Then it has a minimal member r. That is, for all r′ R r we
have a partial solution up for ϕ up to r′. But then there is a partial solution up to r, a contradiction.

We also get a lower bound.

Observation 3.41 (Over GBC−). Π1
k-CA is equivalent to Σ1

k-TR1.

Proof. Simply observe that a Σ1
k recursion of length 1 is just asking for a single Σ1

k-definable class.

So, because Σ1
k-TR clearly proves Σ1

k-TR1 we have that Σ1
k-TR is between Π1

k-CA and Π1
k+1-CA. Later—

specifically theorem 3.50 and a special case of theorem 3.1—we will see that this separation is by consistency
strength.

This observation can also be used to show that KM can be alternatively axiomatized by a transfinite
recursion principle.

Proposition 3.42. Over GBC−, the following are equivalent.

1. The full second-order Comprehension schema; and

2. Σ1
ω-Transfinite Recursion, the schema asserting that every transfinite recursion of a second-order prop-

erty has a solution.

Proof. (1 ⇒ 2) Use Π1
k+1-Comprehension to get an instance of Σ1

k-Transfinite Recursion. (2 ⇒ 1) Use
Σ1
k+1-Transfinite Recursion to get an instance of Π1

k-Comprehension.

In the sequel we will stratify Σ1
k-TR by the length of recursions, separating them by consistency strength

similar to the previous analysis of ETR. Before doing so, however, let us see why the arguments for ETR do
not carry over immediately.

To separate ETRΓ·ω from ETRΓ we started with a model of ETRΓ·ω and looked at the coded V -submodel
generated from initial segments of TrΓ·ω(G), where G was a global well-order. This submodel then satisfied
ETRΓ because iterated first-order truth predicates from the original model continued to be iterated first-order
truth predicates in the submodel. This is because the two models have the same first-order part, so they
agree on well-orders and they agree on first-order truth. We then inductively get that they agree on iterated
truth. And since fragments of Elementary Transfinite Recursion are equivalent to the existence of certain
iterated truth predicates, we get ETRΓ in the submodel.

But that strategy cannot work for the non-elementary transfinite recursion principles Σ1
k-TR for k ≥ 1.

The problem is simple: a Σ1
k-truth predicate must be a hyperclass. But this hyperclass contains (X = X,A)

for all classes A. If we had a class coding this truth predicate we could thus from it define a class coding
the hyperclass of all classes. But that is impossible, as seen by an easy diagonalization argument. Because
of this, there is no hope for having an iterated Σ1

k-truth predicate. So we must take a different strategy.
Instead, we will work directly with solutions to Σ1

k-transfinite recursions. Here we run into a potential
obstacle. Unlike with elementary transfinite recursions which depend only upon the sets (and possibly
finitely many class parameters), determining whether a class is a solution to a Σ1

k-transfinite recursion
requires quantifying over all the classes. So if we restrict the classes to a V -submodel it may be that the
smaller model disagrees about what is a solution to the recursion. We overcome this obstacle by ensuring
that our V -submodel is sufficiently elementary in the larger model.

It will be convenient to work in the unrolling, so let us see what the theory of the unrolling is. First,
recall a special case of definition 2.29.

Definition 3.43. Let k ∈ ω. Then the Σk-Transfinite Recursion principle is the axiom schema consisting
of the following axiom for each Σk-formula ϕ(x, y, a):

Suppose a is a parameter so that ϕ(x, y, a) defines a class function F : V → V and δ is an ordinal. Then
there is a function s : δ → V so that for all i ∈ δ we have s(i) = F (s � i).
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We can refine this to the Σk-Transfinite Recursion ≤ γ principle, which restricts the ordinals δ allowed
to only those δ ≤ γ.

Theorem 3.44. Let (M,X ) |= GBC+ Π1
k-CA be a model of second-order set theory, with k ≥ 1, and let U be

the unrolled model obtained from (M,X ). Then, if (M,X ) |= Σ1
k-TR we have U |= wZFC−I (k)+Σk-Transfinite

Recursion.

Proof. We have already seen in chapter 2 that the unrolling of a model of GBC + Π1
k-CA must satisfy

wZFC−I (k). The new content is that U satisfies Σk-Transfinite Recursion. This is done similar to the
argument for the proof of proposition 2.31.

Consider an instance of Σk-transfinite recursion. That is, F is a class function U → U which is Σk-
definable, possibly using a membership code as a parameter, and D is a membership code equipped with
<D a membership code for a well-ordering of D. We want to see that there is a membership code for the
desired s. First, observe that in the ground universe that F is Σ1

k-definable; cf. lemma 2.22.
We will build the the desired membership code S via an instance of Σ1

k-Transfinite Recursion. The idea
is to mimic the recursion to produce s, but in membership codes. This introduces some extra work, since
we have to deal with the picky details of membership codes.

The iteration proceeds as follows, with an outer layer and an inner layer. The outer layer occurs on eltsD
according to the well-ordering corresponding to the membership code <D (see corollary 2.17). Each step d
in the outer layer produces a partial construction of S, call it Sd. We start with S0 = ∅ and take unions at
limit stages. The hard work is done in the successor step, where the inner layer of the transfinite recursion
occurs. We start with Sd and want to produce Sd+1. By construction, each d′ ∈ eltsD which comes before
d in <D is in Sd. More, there is a corresponding node, call it f(d′), which represents F (Sd � d′) and then
nodes for {d′}, {d′, f(d′)}, and (d′, f(d′)) above, similar to the constructions in proposition 2.15 and lemma
2.16. In particular, Sd itself may not be a membership code. Modify Sd to produce a membership code U by
adding a top node tU and edges from each (d′, f(d′)) node in Sd to tU . Then, we have a membership code
F (U) by Elementary Comprehension. In the proof for proposition 2.31 at this point we build the maximum
initial partial isomorphism between Sd and F (U) by elementary transfinite recursion. Here we can do it in a
single step, as asserting the existence of such is a Σ1

1-assertion. Given this partial isomorphism we can glue
a copy of F (U) onto Sd, as in the argument for proposition 2.24. Then, add d + 1 to Sd along with nodes
for {d+ 1}, {d+ 1, tF (U)}, and (d+ 1, tF (U)) and the corresponding edges to produce Sd+1.

Corollary 3.45. Let (M,X ) |= GBC+Σ1
k-TRΓ where k ≥ 1 and Γ is a well-order, possibly class-sized. Then

the unrolled model U satisfies wZFC−I (k) plus the Σk-Transfinite Recursion ≤ Γ principle.

Proof. In the case for ETR, we could not control the height of the recursion to produce the desired membership
code S because we did not know how long a recursion was needed to construct partial isomorphisms between
membership codes. So although the outer layer of our recursion had Γ many steps—where Γ is the height
of the first-order recursion we were mimicking—each of those steps consisted of an inner layer of recursion
which could be very long. But for Σ1

k-TR those inner steps are of finite, bounded length. We produce the
partial isomorphism in a single step, because the existence of such a function follows from an instance of
Π1

1-Comprehension, and then immediately use to define the next approximation to S. So this recursion is
n · Γ for some standard finite n ≥ 2. Conclude that n · Γ ≤ Γ · n by some simple arithmetic of well-orders16

and observe that Σ1
k-TRΓ is equivalent to Σ1

k-TRΓ·n. So Σ1
k-TRΓ suffices to prove there is a solution.

And in the other direction.

Proposition 3.46. Suppose N is a model of wZFC−I (k) plus the Σk-Transfinite Recursion ≤ γ principle.
Let κ be the largest model of N and (M,X ) be the cut off model obtained from N , i.e. M = V Nκ and X is
the (definable) class in N consisting of all subsets of M . Then, (M,X ) |= GBC + Σ1

k-TRΓ, where Γ ∈ X is
such that N |= Γ ∼= γ.

Consequently, if N further satisfies the full Σk-Transfinite Recursion principle, then (M,X ) |= Σ1
k-TR.

16If Γ is finite then this is obvious and indeed equality holds. So consider the case where Γ ≥ ω. Take ∆ and finite m so
that Γ = ω ·∆ +m. Then, n · Γ = ω ·∆ + nm = Γ + (n− 1)m. This is less than Γ · 2 ≤ Γ · n because Γ ≥ ω.
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Proof. Consider an instance of Σk-Transfinite Recursion for a recursion along Γ, possibly using a parameter
from X . We want to find the subset of V Nκ which witnesses that this recursion has a solution. This is done
in the obvious way in N by means of an instance of Σk-Transfinite Recursion of height γ, where γ is the
ordinal isomorphic to Γ.

Now let us see that we may assume a fragment of Class Collection without loss.

Theorem 3.47. Let (M,X ) |= GBC + Σ1
k-TRΓ for Γ ∈ X and k ≥ 1. Then there is Y ⊆ X second-order

definable over (M,X ) so that (M,Y) |= GBC + Σ1
k-TRΓ + Σ1

k-Class Collection.

Proof. Fix G ∈ X a global well-order of M . Set Y = L(M,G), the hyperclass of (M,G)-constructible classes.
(See section 2.3 for a definition.) Corollary 2.48 tells us that (M,Y) |= GBC+Π1

k-CA+Σ1
k-CC. It remains only

to see that (M,Y) |= Σ1
k-Transfinite Recursion for recursions of height ≤ Γ. By proposition 3.46 it suffices

to show that L(M,G), the (M,G)-constructible unrolling of (M,X ), satisfies the Σk-Transfinite Recursion
≤ γ principle, where γ ∈ L(M,G) is the ordinal isomorphic to Γ.

Work in the unrolling U of (M,X ). Then, L(M,G) = L(M,G)U. Let ϕ(x, y, a) be a Σk-formula with
a ∈ L(M,G) a parameter. Then, ϕ(x, y, a)L(M,G) is Σk (in parameters). So applying an instance of Σk-
Transfinite Recursion ≤ γ in U gives a solution to the recursion of ϕ(x, y, a)L(M,G) along γ. We want to see
that this solution is in L(M,G). Using Σk-Collection inside L(M,G), we can for each i ∈ γ find αi so that
Lαi(M,G) sees a partial solution up to i for this recursion. So we have the sequence 〈αi : i ∈ γ〉 ∈ L(M,G)
and thus can get the entire solution in L(M,G), as desired.

Because this Y is a definable hyperclass in (M,X ) any consistency assumptions witnessed in (M,Y) are
also visible to (M,X ). Of particular interest to us is the following consequence thereof: If Σ1

k-TRΓ +Σ1
k-Class

Collection proves there is a coded V -submodel of Σ1
k-TR∆ then so does Σ1

k-TRΓ.

Theorem 3.48. Suppose (M,X ) |= GBC + Σ1
k-TRΓ·ω + Σ1

k-Class Collection, for k ≥ 1 and Γ ∈ X , has
that every class is (M,G)-constructible for some fixed global well-order G. Then there is Y ⊆ X a coded
V -submodel of (M,X ) so that (M,Y) |= GBC + Σ1

k-TRΓ.

By the above remarks, this immediately yields the following corollary.

Corollary 3.49. Suppose (M,X ) |= Σ1
k-TRΓ·ω for k ≥ 1 and Γ ∈ X . Then there is Y ⊆ X a coded

V -submodel of (M,X ) so that (M,Y) |= Σ1
k-TRΓ.

Proof of theorem 3.48. Unroll (M,X ) to U |= ZFC−I (k) plus Σk-Transfinite Recursion ≤ γ plus V = L(M,G)
for some G ∈ X a global well-order.

Recall lemma 2.62.1, which asserted that our unrolled model satisfies Σk-reflection along the Lα(M,G)-
hierarchy. Using the instance of this for the universal Σk-formula gives that there are club many δ so that
Lδ(M,G) ≺Σn L(M,G). Therefore, we are done if we can can show that there are club many ordinals α so
that Lα(M,G) is closed under solutions to Σk-transfinite recursions of height ≤ γ, where γ is the ordinal
isomorphic to Γ. This is because if υ is in both of these clubs then Lυ(M,G) will satisfy ZFC−I (k) plus
Σk-Transfinite Recursion ≤ γ. So if Y ⊆ X is the hyperclass consisting of classes which appear in Lυ(M,G),
then Y is coded in X , since Lυ(M,G) is a set in the unrolling.

Work inside the unrolling U. Fix an arbitrary ordinal α0. We will use an instance of Σk-Transfinite
Recursion ≤ γ ·ω to find α > α0 as in the above paragraph. It is obvious that the class of such α is closed, so
this will suffice to show that it is club. We build α by means of a Σk-transfinite recursion of height γ ·ω. The
outer layer of this recursion, which has ω many steps, builds a sequence 〈αn : n ∈ ω〉 so that Lαn+1

(M,G)
has solutions for Σk-transfinite recursions of height γ with parameters from Lαn(M,G). The inner layer,
building αn+1 from αn has height γ, so that the whole recursion has height γ · ω.

For the inner recursion, we build a grid of ordinals with width ω×Lαn(M,G) and height γ. Each column
of this grid is indexed by (ϕ, a) where ϕ(x, y, a) is some formula and a ∈ Lαn(M,G).17 We then use the

17Since we have a column for each (n, a), even when n is not (the Gödel code of) a Σk-formula of appropriate arity, for those
bad n just have the ordinals in the column all be αn.



CHAPTER 3. TRUTH AND TRANSFINITE RECURSION 76

universal Σk-formula to simultaneously build these columns upward. Namely, in the (ϕ, a)-th column at
row i, the ordinal ξi(ϕ,a) we put in is an ordinal ξ ≥ supj<i ξ

j
(ϕ,a) so that Lξ(M,G) has the length i partial

solution to the recursion given by ϕ(x, y, a). This a single step because recognizing such a ξ is a Σk property.
So we fill out the grid in γ many steps and then set αn+1 = sup ξi(ϕ,a) to be the supremum of the ordinals in
the grid.

Then at α = supn αn we have caught our tail and have that Lα(M,G) is closed under solutions to Σk-
transfinite recursions of height ≤ γ. And since we could get such α > α0 for arbitrary α0, there is a club of
such α.

Finally, note that both of the class clubs we are looking at are Σk-definable. To say that Lδ(M,G) reflects
the universal Σk-formula is a Σk property. And to say that Lα(M,G) is closed under solutions to γ-length
Σk-transfinite recursions is Σk, since it is a Σk to check whether something is a solution. So ZFC−(k) suffices
to prove that these class clubs have nonempty intersection.

This completes the proof of theorem 3.1.
Finally, let us see by a similar argument that Π1

k+1-CA and Σ1
k-TR can be separated by consistency

strength.

Theorem 3.50 (Over GBC−). Let k be a natural number. Suppose Π1
k+1-CA holds. Then there is a coded

V -submodel of GBC− + Σ1
k-TR.

Corollary 3.51. GBC + Π1
k+1-CA proves Con(GBC + Σ1

k-TR) and GBC− + Π1
k+1-CA proves Con(GBC− +

Σ1
k-TR).

Proof of theorem 3.50. Work over (M,X ) |= GBC− + Π1
k+1-CA. Fix a global well-order G and consider the

(M,G)-constructible unrolling W = L(M,G). (See section 2.3 for further details of this construction.) Recall
that W satisfies Σk+1-Separation and Σk+1-Collection. Work in W .

Let C ⊆ W be the definable club class of ordinals α so that Lα(M,G) ≺Σk W . The existence of such
C follows from a reflection argument using the L(M,G)-hierarchy. Let α0 be least > OrdM in this club
C. Given αn, pick αn+1 > αn from C which is closed under solutions to Σk-transfinite recursions with
parameters and lengths in Lαn(M,G). Such solutions exist because Σk+1-Collection implies the existence
of solutions to transfinite recursions of Σk properties. And being the solution to such a recursion is a Σk-
expressible property, so αn+1 exists by an instance of Σk-Collection. Set α = supn αn, which exists by
yet another instance of Collection. Then Lα(M,G) |= Σk-Transfinite Recursion. Let Y be the cutting off
of Lα(M,G), i.e. the definable class over W consisting of all subsets of M which are in Lα(M,G). Then
(M,Y) |= GBC− + Σ1

k-TR, as desired.



Chapter 4

Least models

Es liegt nämlich nahe, das Axiom [der
Beschränktheit] in vermeintlich präziserer
Form so zu fassen, daß unter allen möglichen
Realisierungen des Axiomensystems—wobei
isomorphe als nicht verschieden zu betrachten
wären—der “Durchschnitt”, d.h. der kleinste
gemeinsame Teilbereich, gewählt werden soll.
Sofern man dieser Fassung nicht überhaupt
einen scharfen Sinn abstreiten will, so ist es
jedenfalls möglich, daß die dem Umfang nach
verschiedenen möglichen Realisierungen des
Axiomensystems nicht einen kleinsten
gemeinsamen Teilbereich aufweisen, in dem
gleichfalls sämtliche Axiome befriedigt
würden.

Abraham Fraenkel

One desideratum for early axiomatizers of set theory was categoricity, similar to the categoricity results
about N and R. Fraenkel [Fra22] and [Fra28, pp. 355–356] wanted a “Beschränktheitsaxiom” which would
state, essentially, that the only objects that exist are those which are guaranteed to exist by the other axioms.
We know now that there can be no such axiom.1 But we can transmute this question of axioms into a model
theoretic question. At first approximation, what we would like to know is: What are the objects that must
be in every model of T? Do they form a model of T? A positive answer would give a partial realization of
Fraenkel’s desire. While we cannot write down an axiom (or a set of axioms) which uniquely picks out this
structure, we would know that if we restrict to the bare minimum possible we still get a model of T .

As stated, this admits a trivial answer. By the nonstandardness phenomenon, the only objects in every
model of set theory are those appearing in Vn for some standard n. These form Vω, which of course lacks any
infinite sets. So in this naive form, the question is not interesting. But we can refine it to a more interesting
question by restricting which models we look at. A natural restriction is to only look at transitive models.

1This must be qualified. The Löwenheim–Skolem theorem implies that there can be no axiomatization of set theory in
first-order logic which admits a unique model. But in different logics we can have categoricity. For instance, it follows from
work of Zermelo [Zer30] that second-order ZFC—i.e., ZFC but with Separation and Collection formulated as single axioms in
second-order logic—plus “there are no inaccessible cardinals” has a unique model, namely Vκ where κ is the least inaccessible.
(It must be noted, however, that this theory has a very ad hoc feel.)

But the set theories considered in this dissertation are all formulated in first-order logic, ruling out any Beschränktheitsaxiom.
It would go too far astray to give a defense here of why we would want to restrict to first-order logic, but let me mention [Vää01].
See also the epigraph to chapter 2.
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They hold a special place in set theoretic practice and many set theorists believe we have a determinate
notion of well-foundedness and can thereby pick out the transitive models. So the question becomes: is the
intersection of all the transitive models of T itself a model of T? Equivalently, is there a least transitive
model of T?

Before moving to the main topic—models of second-order set theories—let me quickly review what is
known for models of first-order set theory. Shepherdson [She53] and, independently, Cohen [Coh63] proved
that there is a least transitive model of ZFC.2 This model is Lα where α is the least ordinal so that there
is a transitive model of ZFC of height α. Their argument, which uses that ZFC is absolute to L, generalizes
to stronger theories.3 In particular, it generalizes to theories extending ZFC by asserting the existence of
“small” large cardinals. Formally, say that a first-order set theory T is absolute to L if M |= T implies that
LM |= T . Then if there is a transitive model of T which is absolute to L there is a least transitive model of
T . So there is a least transitive model of, for example, ZFC plus there is a proper class of Mahlo cardinals.

But this phenomenon does not extend too far up the large cardinal hierarchy. It fails for large cardinals
which give elementary embeddings of the universe into an inner model.

Proposition 4.1. Let T ⊇ ZFC be a theory which proves there is a measurable cardinal. Then there is not
a least transitive model of T .

Proof. Suppose otherwise that N is the least transitive model of T . Let M ⊆ N be the inner model obtained
from taking an ultrapower of M using a measure on a measurable cardinal in N . By leastness, M = N , a
contradiction.

On the other hand, we can recover something of this phenomenon for measurable cardinals and beyond.
Results from inner model theory show that if an ordinal κ is measurable in some model then there is a least
model in which κ is measurable. And this has been extended higher up the large cardinal hierarchy, although
it remains open in many cases, most notably for κ supercompact.

The lesson to be had is that for strong enough first-order set theories, we do not have least transitive
models. However, if we restrict the models we look at in some further (non-first-order expressible) way, then
we do get least models. In this chapter we will see that there is a similar phenomenon for second-order set
theories, except the reason and the ‘fix’ to get leastness are different.

Definition 4.2. Let T be a second-order set theory. The least transitive model of T—if it exists—is the
unique transitive (M,X ) |= T so that (M,X ) is a submodel of any transitive model of T . The least β-
model of T—if it exists—is the unique transitive β-model (M,X ) |= T which is a submodel of any transitive
β-model of T .4

The main theorem of this chapter answers which second-order set theories have least transitive models for
a broad class of theories. In short, strong theories do not have least transitive models while weaker theories
do.

Theorem 4.3.

• There is not a least transitive model of KM nor of KMCC.

• For k ≥ 1 there is not a least transitive model of GBC + Π1
k-CA nor of GBC + Π1

k-CA + Σ1
k-CC.

• There is a least transitive model of GBC + ETRΓ, for ωω ≤ Γ ≤ Ord.

2Of course, their proofs require a consistency assumption, namely that there is some transitive model of ZFC at all.
3Or more precisely, Shepherdson’s argument generalizes to stronger theories. The essence of Shepherdson’s argument is

the same as the standard contemporary argument that there is a least transitive model of ZFC. But Cohen uses a different
argument which goes through what he calls “strongly constructible” sets, a strengthening of constructability, which I do not
see how to generalize to get results about stronger theories.

4In chapter 1, we did not require β-models to be transitive. But every β-model is isomorphic to a transitive model so the
extra requirement here is harmless. If one prefers to drop it, then one would need to tweak the definition so that the least
β-model of T embeds into every β-model of T , rather than being a literal submodel.
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• (Shepherdson [She53]) There is a least transitive model of GBC.

There is some redundancy in the statement of this theorem. In chapter 2 we saw that any model of KM
contains a V -submodel of KMCC, so there is a least transitive model of KM if and only if there is a least
transitive model of KMCC. (And similar remarks apply for GBC + Π1

k-CA versus GBC + Π1
k-CA + Σ1

k-CC.)
The argument for the negative part of theorem 4.3, that strong second-order set theories do not have

least transitive models, actually shows something stronger. Namely, it shows that a given fixed first-order
part does not have a least KM-realization (or (GBC + Π1

k-CA)-realization or. . . ).

Definition 4.4. Let M be a model of first-order set theory and T be some second-order set theory. The
least T -realization for M—if it exists—is the T -realization X for M so that for any T -realization Y for M
we have X ⊆ Y.

Theorem 4.5. No countable M |= ZFC has a least KM-realization. Moreover, if k ≥ 1 then no countable
M |= ZFC has a least (GBC + Π1

k-CA)-realization.

The proof of this uses little about the theory of M itself. All the important work takes place above M in
the unrolling. As such, a version of this theorem goes through for KM− and GBC− + Π1

k-CA. It also yields
that least models cannot be recovered by moving to stronger theories.

Theorem 4.6. No computably axiomatizable extension of KM (in L∈) has a least transitive model. More
generally, no computably axiomatizable extension of GBC−+Π1

k-CA, for k ≥ 1, has a least transitive model.5

Before discussing β-models, where we get positive results even for strong theories, let me highlight the
conspicuous absence of GBC + ETR in theorem 4.3.

Question 4.7. Is there a least transitive model of GBC + ETR?

While this question remains open, something can be said about the structure of (GBc+ETR)-realizations
for a model M .

Theorem 4.8. Let M |= ZFC be (GBc + ETR)-realizable. Then M has a basis of minimal (GBc + ETR)-
realizations, where amalgamable (GBc + ETR)-realizations6 sit above the same basis element. That is, there
is a set {B} of (GBc + ETR)-realizations for M satisfying the following.

1. Elements of the basis are pairwise non-amalgamable;

2. If Y is any (GBc + ETR)-realization for M then there is a unique basis element B so that Y ⊇ B; and

3. If X and Y are amalgamable (GBc + ETR)-realizations for M then they sit above the same B.

And we get the same result for GBC + ETR if M has a definable global well-order.
Let us now turn to β-models. Weak theories have least transitive models while strong theories do not.

For first-order set theories, we could get least models for strong theories by requiring extra from our models,
namely by nailing down which ordinals are to be the large cardinals of the model. For second-order set
theories we recover leastness by requiring that the model be correct about well-foundedness.

Theorem 4.9.

• (Folklore) There is a least β-model of KM.

• For k ≥ 1 there is a least β-model of GBC + Π1
k-CA.

5Indeed, this is true for more than just computably axiomatizable extensions. What we get is that if T ⊇ GBC− + Π1
1-CA

is an element of every transitive model of T then T cannot have a least transitive model. In particular, no arithmetical T or
even hyperarithmetical T ⊇ GBC− + Π1

1-CA can have a least transitive model.
6Two T -realizations X and Y for M are amalgamable if there is a GBc−-realization Z for M so that X and Y are both

subsets of Z.
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• There is a least β-model of GBC + ETR.

• For any Γ ≥ ωω there is a least β-model of GBC + ETRΓ.

• (Folklore) There is a least β-model of GBC.

Of course, the above results that there is a least model of such and such theory have consistency re-
quirements, namely that the theory has any model (of appropriate type) at all! For the sake of readability
I have suppressed mentioning the exact consistency assumptions here. Every result in this chapter follows
from ZFC + “there is an inaccessible cardinal”. For the reader who wants something more precise, see the
statements of the theorems in the body of this chapter.

This chapter is organized as follows. First I collect some observations about β-models and well-founded
classes that will be used later in the chapter. I then review Barwise’s notion of the admissible cover, which
will be used to prove the results for models of strong theories. This sets us up to finally get to the results
about the existence and non-existence of different kinds of least models. I have organized this chapter by the
strength of the theories, as the methods used vary. I first give the results about strong theories. Next comes
results for theories of medium strength. Finally, I give results about weak theories, or rather collect some
results from the literature and from chapter 1. The chapter concludes with a coda on the analogy between
second-order set theory and second-order arithmetic.

The section on models of strong theories will make essential use of the results from chapter 2. As such,
the reader is strongly encouraged to look at that chapter before reading section 4.3.

4.1 β-models and well-founded classes

In this section I collect several observations about β-models and well-founded classes. They will be used
many places in this chapter, usually without explicit citation.

Observation 4.10. Suppose (M,X ) is a β-model of GBc− and (M,Y) |= GBc− is a V -submodel of (M,X ).
Then (M,Y) is a β-model.

Proof. Suppose towards a contradiction that (M,Y) is not a β-model. Then there is R ∈ Y so that (M,Y)
thinks that R is ill-founded but in V we can see that R is well-founded. Because (M,Y) thinks R is ill-
founded there is a set r ∈M which witnesses this; R being ill-founded means there is some infinite descending
sequence in R, but this sequence is countable and hence must be a set. But then (M,X ) thinks R is ill-
founded since it also sees that r witnesses the ill-foundedness of R. But then, because (M,X ) is a β-model,
R must really be ill-founded, a contradiction.

Note that we did not need near the full strength of GBc− for this argument to go through. All we need
is that the theory of the models be strong enough to verify that a class being ill-founded is witnessed by a
set.

We can strengthen this observation.

Observation 4.11. Suppose (N,Y) |= GBc− is an Ord-submodel of a β-model (M,X ) |= GBc−. Then
(N,Y) is a β-model.

Proof. Take arbitrary ill-founded R ∈ Y. Then, because (M,X ) is a β-model, there is a set r ∈ M which
witnesses the ill-foundedness of R. This r might not be in N , but it has some rank α in M . Now consider
r′ = R ∩ V Nα+1 ∈ N . This r′ is well-founded if and only if R is, since the ill-foundedness in R occurs by rank

α. But M thinks r′ is ill-founded and well-foundedness is absolute between transitive models of ZFC−, so
N thinks r′ is ill-founded. So N correctly thinks that R is ill-founded and, as R was arbitrary, N is correct
about well-foundedness.

The following observation generalizes observation 4.10 in a different direction to tell us to what extent
non-β-models with the same first-order part must agree on what is well-founded. In short, they must agree
as much as possible.
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Observation 4.12. Suppose X and Y are GBc−-realizations for M . If R ∈ X ∩ Y is a class relation then
(M,X ) and (M,Y) agree on whether R is well-founded.

Proof. Because the two models have the same first-order part.

The following observation also appeared in the proof of corollary 3.15, but for the sake of clarity I
reproduce it with a proof here.

Observation 4.13. Suppose (N,Y) is an Ord-submodel of (M,X ), where both are models of GBC−. Suppose
(N,Y) |= R is well-founded. Then (M,X ) |= R is well-founded.

Proof. Suppose otherwise. Then there is an ordinal α ∈M so that M |= R � F ′′α is ill-founded, where F ∈ Y
is a bijection between Ord and domR, which exists by Global Choice. But by Replacement R � F ′′α must be
in N . And N is a transitive submodel of M and they are both models of ZFC−, so they must agree on what
sets are well-founded. So N |= R � F ′′α is ill-founded, so (N,Y) |= R is ill-founded, a contradiction.

4.2 Admissible covers and nonstandard compactness arguments

To get theorems 4.3 and 4.5 will require more than the elementary tools of admissible set theory. I will
review the necessary material in this section.

Speaking roughly, the strategy to prove that strong second-order set theories do not have least transitive
models will be to work with their unrollings. Given an unrolling W of a model (M,X ), we want to produce
a new model N so that N and W agree up to their largest cardinal, but we introduced ill-foundedness in
N above that. Then, cutting off N we get (M,Y). But the ill-foundedness will mean that Y cannot be
contained in X , so (M,X ) cannot be the least transitive model of our theory.

It has previously been studied by H. Friedman where we can introduce ill-foundedness in a model of set
theory. He proved the following very general theorem.

First though, let me set up some terminology. If N is a model of set theory with A as a transitive
submodel7 then say that N is ill-founded at A if there is an omega sequence of ordinals in N \ A which is
co-initial in OrdN \ OrdA.8 If A is an admissible set then LA denotes the associated admissible fragment
of LOrd,ω, i.e. the infinitary language consisting of the formulae in A. If A is countable then the Barwise
compactness theorem applies to LA-theories.

Theorem 4.14 ([Fri73, theorem 2.2]). Let A be a countable admissible set and let T ⊆ A be an LA theory
which is Σ1-definable in A. If there is a model of T which contains A then there is an ill-founded model N
of T so that the following hold.

• N contains A as a transitive submodel and N is ill-founded at A. In particular:

• wfp(N) ⊇ A;9 and

• Ordwfp(N) = OrdA.

Figure 4.1 illustrates the theorem.
Observe that in general we cannot get wfp(N) = A. For a counterexample, suppose that α is a countable

ordinal so that Lα |= ZFC− + “every set is countable”. Then by Friedman’s theorem there is N ⊇end Lα
satisfying KP+V = L + “every set is countable” so that N is ill-founded at Lα. Consider an ordinal γ ∈ N
which is not in wfp(N). Then, N thinks γ is countable so there is G ⊆ ω2 so that (ω,G) ∼= (γ,∈). In
particular, G is in wfp(N). I claim that this G cannot be in Lα. To see this, note that Lα satisfies enough

7A is a transitive submodel of N if A ⊆ N and for all a ∈ A and all b ∈ N if N |= b ∈ a then b ∈ A.
8This is equivalent to asking that A be topless in N , meaning that there is no smallest ordinal in N above the ordinals of

A.
9wfp(N) is the well-founded part of N , that is the subset of N consisting of elements a so that the membership relation of

N below a is well-founded.



CHAPTER 4. LEAST MODELS 82
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Figure 4.1: An illustration of Friedman’s theorem. The dashed line represents that N is ill-founded at A.

Replacement that it can compute wfp(G) from G. But wfp(G) ∼= α. So if G ∈ Lα then by Mostowski’s
collapse lemma we must have α ∈ Lα, a contradiction.

The reader may find it useful to see a simple application of this theorem before moving on.

Proposition 4.15. Consider Zermelo set theory Z, the first-order set theory axiomatized by Extensionality,
Pairing, Union, Infinity, Powerset, and the axiom schema of Separation. There are transitive models of Z
which are wrong about well-foundedness. That is, there is M |= Z transitive with R ∈ M so that M |= R is
well-founded but externally we can see that R is ill-founded.

Since we are concerned with transitive models, they will automatically satisfy Foundation. As well, we
can easily arrange so that M also satisfies Choice. So this cute little proposition can be seen as yet more
evidence for the importance of Collection in the axioms for set theory. If we include no fragment of Collection,
then we do not get the incredibly useful fact that well-foundedness is absolute for transitive models.

Proof. Let A = LωCK
1

, where ωCK
1 is the Church–Kleene ordinal, i.e. the least admissible ordinal > ω. It

is easy to see that there are countable models of KP + “Vω+ω exists” which contain A. So by Friedman’s
theorem there is N |= KP + “Vω+ω exists” which is ill-founded at A. Take γ ∈ N a countable ordinal which
is not in the well-founded part. Then, there is G ⊆ ω2 in N so that (ω,G) ∼= (γ,∈).

Now let M = V Nω+ω. It is well-known that Vω+ω |= Z. Moreover, KP is enough to verify this so that
indeed M |= Z. Observe also that M is transitive, because all of its elements have rank < ω + ω < ωCK

1 .
But M is not correct about well-foundedness, because M thinks G is well-founded.

While Friedman’s theorem is fantastic, it is not quite general enough for my purposes. To illustrate the
difficulty, start with a countable β-model (M,X ) |= KMCC. Consider its unrolling W . Then, Hyp(M) ∈W
(see proposition 4.22 below). So by Friedman’s theorem we can find N |= ZFC−I which is ill-founded at
Hyp(M) and so that M is a rank-initial segment of N . Then, N thinks that Hyp(M) exists. However,
Hyp(M)N cannot be in the well-founded part of N by construction. So Friedman’s theorem cannot be used
to produce a model of ZFC−I which is ill-founded at Hyp(M)N .

The problem is that Friedman’s theorem only applies to well-founded models of KP, whereas I need to
be able to handle ill-founded models. Fortunately, Barwise developed machinery for compactness arguments
over an ill-founded domain.

The important notion here is that of the admissible cover of a model of set theory, which I review here.
For further details see the appendix to [Bar75]. Briefly, the admissible cover of U |= KP is a certain admissible
structure with U as its urelements. The admissible cover of U allows us to then apply the tools of admissible
set theory to U , even though U itself is ill-founded.

First we must discuss set theory with urelements. An urelement is an object that is neither a set nor
a class but can be an element of sets.10 In contemporary set theory we usually formulate things just in

10The reader (or maybe just me) may find it amusing to think of urelements as the opposite of classes. A class can have
elements but cannot be an element whereas an urelement cannot have elements but can be an element. A set, of course, can
both have elements and be an element.
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terms of pure sets, i.e. those sets with no urelements in their transitive closures. This is harmless, as any
structures of interest can be simulated in the pure sets. For instance, we do not need the natural numbers as
urelements since we can instead work with the finite ordinals. But for this context we will want models with
urelements. These structures, of course, can be simulated with pure sets. So despite the use of set theories
with urelements, all of the below can be formalized in ordinary ZFC.

Formally, the theory we will work with is KPU, Kripke–Platek set theory with urelements. I give an
axiomatization here, both for the benefit of the reader unfamiliar with KP—that is, KPU sans urelements—
and to highlight the fact that KPU does not prove there is a set of all urelements.

Definition 4.16. The theory KPU is a first-order set theory formulated with urelements. That is, KPU
is a two-sorted theory whose objects are sets and urelements. In addition to basic axioms asserting that
sets and urelements are distinct, nothing is a member of an urelement, etc., KPU is axiomatized by the
following axioms: Extensionality for sets, Pairing, Union, ∆0-Separation, ∆0-Collection, and Foundation.
Here, Foundation is the schema whose instances are of the form

∃x ϕ(x)⇒ (∃x ϕ(x) ∧ ∀y ∈ x ¬ϕ(y))

for each L∈-formula ϕ.11

I will write (M,U) for the model of KPU with sets M and urelements U , suppressing writing the set-
set and urelement-set membership relations. Often I will give a single name to this structure, usually in
the fraktur font, such C or R. We will also consider structures with additional functions and relations,
which I will denote by (M,U ;R0, R1, . . .). These structures will satisfy the schemata of ∆0-Separation and
∆0-Collection in the expanded language.

For an example of a model of KPU, let us consider a model with the reals as its urelements. That is,
consider (R,+,×, <) the set of real numbers with its arithmetic operations. Let M consist of all hereditarily
finite sets above the reals. Formally, let M0 = ∅ and Mn+1 be the set of all finite subsets of R ∪Mn. Then
M =

⋃
n∈ωMn. The reader can easily check that R = (M,R; +,×, <) is a model of KPU. But notice that

M does not contain R, as all sets in M are finite. So R gives an example of a model of KPU without a set
of all urelements. It also gives a model of KPU which does not satisfy the axiom of Infinity.

Let us consider another example of a model of KPU, this one more relevant to the present discussion.
Let U be an ω-nonstandard first-order model of set theory with membership relation E. We will treat U
as the urelements for a model of KPU. Similar to the previous example we can define the hereditarily finite
sets above U . If M is the collection of such then U = (M,U ;E) is a model of KPU.

We would like to use a structure like this to mimic internal talk in U with talk of honest-to-V well-founded
sets. But this U does not have enough sets to do so. For u ∈ U let uE = {v ∈ U : u E v} be the set of what
U thinks are the elements of u. Because M only consists of finite sets the only u ∈ U for which uE ∈M are
those which really are finite. In particular, (ωU )E 6∈ M and any α ∈ ωU \ ω will have αE 6∈ M . So this U
cannot directly talk about all the ‘sets’ in U . To do so, we need more.

Definition 4.17. Let U be a (possibly ill-founded) model of first-order set theory with membership relation
E. Then M = (M,U ;E,F ) |= KPU, a model of KPU with U as urelements, covers U if F is a function from
U to M so that F (u) = uE .

Any M which covers U can mimic LU talk. One useful fact about LA for admissible A is that every
element of A is definable by a single LA-formula. Namely, x = a is defined by the formula

∀y y ∈ x⇔
∨
b∈a

y = b

where “y = b” is an abbreviation for the formula defining b. Because A is well-founded this recursive definition
unwraps into a single LA-formula. A similar idea allows us to define elements of U by LM-formulae: define

11The models of KPU we will consider will all be well-founded, so they will automatically satisfy the strongest form of
Foundation.
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Figure 4.2: A picture of the desired generalization of Friedman’s theorem to the ill-founded realm.

x = a for a ∈ U by

∀y an urelement y E x⇔
∨

b∈F (a)

y = b.

More, F lets us translate bounded quantification for U to bounded quantification for M: replace ∃xE y with
∃x ∈ F (y) and similarly for universal quantification. So corresponding to each (of what U thinks is a) ∆0

LU -formula is a ∆0 LM-formula, and similarly for Σ1 or Π1 formulae.
Barwise proved that there is a smallest admissible structure which covers U . This structure, the admissible

cover of U , is the intersection of all admissible structures which cover U and enjoys many nice properties. I
summarize them here.

Theorem 4.18 (Barwise [Bar75, appendix]). Let U |= KP be a possibly ill-founded model of set theory with
membership relation E and let C = (C,U ;E,F ) be the admissible cover of U .

• If U is countable then C is countable.

• The pure sets of C are isomorphic to the well-founded part of U .

• For any A ⊆ U we have A ∈ C if and only if there is a ∈ U so that A = aE.

• The infinitary ∈-diagram of U ,12 considered as a set of LC-sentences, is Σ1-definable over C.

With this notion in hand we are now ready to generalize Friedman’s theorem to the ill-founded. We want,
when starting with a possibly ill-founded model A to produce the picture in figure 4.2, a variation of the
picture in figure 4.1 for Friedman’s theorem. That is, given a theory T satisfying an appropriate consistency
assumption, we want N ⊇ A a model of T which is ill-founded at A.

Theorem 4.19. Let (A,EA) |= KP be countable and C = CovA. Suppose that T is an LC theory which is
Σ1-definable over C.If there is a model of T which contains A then there is (N,EN ) |= T so that:

• A is a transitive submodel of N ;

• OrdA is a proper initial segment of OrdN ;

• There is an ω-sequence coinitial in OrdN \OrdA.

Proof. Friedman’s proof can be adapted to this context, using the technology of the admissible cover.
Extend T , if necessary, to include the infinitary ∈-diagram of A. This extension is consistent as there is a

model of T containing A. The goal is now to construct a further extension T ′ in a language with countably
many new constants cn so that the following conditions hold:

12That is, the collection of all sentences of the form ∀x x ∈ a⇔
∧
b∈a x = b.
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1. Each ϕ ∈ T ′ is consistent;

2. For ϕ ∈ LC, either ϕ ∈ T ′ or “¬ϕ” ∈ T ′;

3. For
∧

Φ ∈ LC if Φ ⊆ T ′ then
∧

Φ ∈ T ′;

4. For “∀xϕ(x)” ∈ LC if for each cn we have ϕ(cn) ∈ T ′ then “∀xϕ(x)” ∈ T ′;

5. For each a ∈ A, “a ∈ c0” ∈ T ′; and

6. If “a ∈ cn” ∈ T ′ for each a ∈ A then there is m > n so that “cm ∈ cn” ∈ T ′ and “a ∈ cm” ∈ T ′ for
each a ∈ A.

Conditions (1–3) ensure there is a model of T ′. Condition (5) forces any model of T ′ to contain new ordinals.
Conditions (4–6) force that the model of T ′ is ill-founded above A. To see this note, that if β < γ are ordinals
above OrdA but below inf{rank(cn) : cn above A} then for every cn we get “ rank(cn) ≥ β ⇒ rank(cn) >
γ” ∈ T ′. So by condition (4) we can conclude β > γ, a contradiction.

T ′ is constructed from T in ω many stages. We continually add new formulae to ensure properties (1–6)
hold at the end. Fix an enumeration 〈ϕn〉 of the LC(cn : n ∈ ω)-sentences13 so that cn first appears after ϕn
and before the first appearance of cn+1.

• Define T ′0 = T ∪ {a ∈ c0 : a ∈ A}. This theory is consistent by Barwise compactness. This ensures
property (5). Set m0 = 1 and m−1 = 0.

• For n ≥ 0, define T ′3n+1 to be T ′3n ∪ {ψ}, where ψ is chosen from ϕn and ¬ϕn so as to be consistent
with T ′3n. This step will ensure properties (1) and (2).

• For n ≥ 0, define T ′3n+2 as follows, according to which of three cases we fall into.

– If ϕn is of the form
∧

Φ and ¬ϕn is in T ′3n+1, then take T ′3n+2 = T ′3n+1 ∪ {¬ϕ} where ϕ ∈ Φ and
this is consistent. This step ensures property (3).

– If ϕn is of the form ∀xψ(x) and ¬ϕn is in T ′3n+1, then take T ′3n+2 = T ′3n+1 ∪ {¬ψ(cm)}, where m
is the index of the least unused cm. This step ensures property (4).

– Otherwise, just take T ′3n+2 = T ′3n+1.

• For n ≥ 0, define T ′3n+3 as follows, according to which of two cases we fall into.

– If there is a ∈ A so that T ′3n+2 ∪ {a 6∈ cmn} is consistent, take this to be T ′3n+3. Set mn+1 = mn.

– Otherwise, the theory T ′3n+2 ∪ {a ∈ cmn : a ∈ M} is consistent. By Barwise compactness, so is
the the theory T ′3n+2 ∪ {a ∈ cmn : a ∈ A} ∪ {cmn ∈ cmn−1

}. Take this to be T ′3n+3 and set mn+1

to be the index of the least unused cm.

• Set T ′ =
⋃
n T
′
n.

By the construction for T ′3n+3, for every n ≥ −1 we have that cmn+1 ∈ cmn and a ∈ cmn , for all a ∈ A
are in T ′. This gives property (6).

13To be clear, by LC(cn : n ∈ ω) I mean the infinitary language consisting of formulae in C in the language of C with
additional symbols cn for n ∈ ω.
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4.3 Strong theories

In this section we will get results about least models of strong theories, those of strength GBC + Π1
1-CA and

above. The main results, that strong theories do not have least transitive models, will be derived from the
following master lemma.

Master Lemma 4.20. Let T ⊇ GBC− + ETR be a second-order set theory which proves the existence of
Hyp(V ). Suppose (M,X ) |= T is countable and T is in M . Then there is Y ⊆ P(M) so that (M,Y) |= T
but X 6⊆ Y.

Before proving this master lemma I must clarify what it means for a second-order set theory to prove
that Hyp(V ) exists. Recall that for a set a that Hyp(a) is the smallest admissible set h with a ∈ h. Always,
Hyp(a) = Lα(a) where α is the least ordinal ξ so that Lξ(a) |= KP. Of course, if A is a proper class then
there can be no class, admissible or otherwise, with A as an element. So it does not make literal sense to
talk of Hyp(V ) inside a model of second-order set theory. But recall from chapter 2 that models of ETR can
reach higher than Ord, coding ‘sets’ of high rank by class-sized relations. (Indeed, this is why the master
lemma asks that T ⊇ GBC− + ETR.) In particular, there are codes for ‘sets’ which look like LΓ(A), for Γ a
class well-order and A a class. In GBC− + ETR, we can talk about the theory of a coded transitive ‘set’, so
it makes sense to ask whether LΓ(A) satisfies KP. If there is a class well-order Γ so that LΓ(A) |= KP then
we say that Hyp(A) exists. Given such a Γ there is a least initial segment Γ0 of Γ so that LΓ0

(A) |= KP.
This is Hyp(A).

From the perspective of the unrolling, if (M,X ) |= Hyp(V ) exists then the unrolling has a set which (it
thinks) is Hyp(M).

Proof of master lemma 4.20. Because T ⊇ GBC− + ETR we can unroll (M,X ) into W . Taking isomorphic
copies if necessary we may assume without loss that M = HW

κ where κ is the largest cardinal in W . And
because T proves the existence of Hyp(V ) we get that Hyp(M)W ∈ W . In general, A = Hyp(M)W may be
ill-founded, for example if M is ill-founded. Let C be the admissible cover of A. Now consider the LC theory
S axiomatized by the following.

• Every theorem T proves about the unrolling;14

• M = HW
κ is anHα-initial segment of the universe. That is, this statement asserts that if x is hereditarily

of cardinality < κ then x ∈M ; and15

• κ is the largest cardinal.

This S can be expressed as a conjunction of a countable set (in A) of Lω,ω-formulae with two LC-formulae.
So it is a single LC-sentence and hence is Σ1-definable over C. This puts us in a position to apply the
generalization of Friedman’s theorem, since A is countable. That is, there is N |= S which is ill-founded
at A. Put differently, there is a descending sequence of ordinals in N co-initial in OrdN \ OrdA. Let
Y = {Y ∈ N : N |= Y ⊆M}.16 Then (M,Y) |= T , by construction.

To motivate the following, suppose for a moment that (M,X ) is a β-model. Then OrdA really is an
ordinal. Thus, Y has no element with ordertype OrdA because otherwise OrdA would be in the well-founded
part of N , contrary to the construction. So X 6⊆ Y, as desired.

But in general (M,X ) need not be a β-model, and it may even be that Hyp(V )(M,X ) is ill-founded. So
the above argument cannot work. Nevertheless, it provides the right idea. Fix a membership code Υ ∈ X
which represents OrdA in the unrolling. Suppose towards a contradiction that X ⊆ Y.

In particular this implies that Υ ∈ Y. Because X and Y must agree about which of their common classes
are well-founded, (M,Y) thinks that Υ is a membership code for an ordinal. Let υ ∈ N be that ordinal.

14If you think of the special case where T is KMCC, then this theory is ZFC−I . In general, this theory is in M because T ∈M
and it is computable from T .

15This can be expressed as a single LC-sentence because M ∈ A.
16If one wants to be picky, since we officially only work with models whose second-order part consists of subsets of the

first-order part, we actually take an isomorphic copy so that elements of Y are subsets of M .
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Figure 4.3: Friedman’s theorem gives N |= S with V Nκ = M = VWκ and N ill-founded at A.

We also have that every initial segment of Υ is in Y.17 In W we have that every initial segment of Υ is
isomorphic to an ordinal in A. Because of the assumption that X ⊆ Y the same isomorphisms exist in N .
So for every ordinal γ ∈ A we have N |= γ < υ.

If N |= γ < υ then γ is isomorphic to an initial segment of Υ. But W sees that initial segments of Υ
represent ordinals in A. So N must see the same and thus γ ∈ A. The upshot of all this is that OrdA is
topped in N , namely by υ. This contradicts the construction of N . So our assumption that X ⊆ Y must be
false, completing the argument. We have found a T -realization for M which does not contain X .

Remark 4.21. The attentive reader may worry about what happens if M is ω-nonstandard. She is right
to worry! There is a subtlety that must be addressed. Namely, if M is ω-nonstandard then no infinite
first-order theory T can be in M ; otherwise, the standard cut would be definable as the supremum of the
ranks of elements of T . So as written the master lemma does not apply to ω-nonstandard models.

Nevertheless, there is a version which does apply to ω-nonstandard models. While it does not make
sense to ask for T to be an element of M it is sensible to ask that T is coded in M , that is whether there
is t ∈ VMω \ ω so that t ∩ Vω = T . In particular, this always happens if T is computable; run the Turing
machine which enumerates T in the nonstandard model of arithmetic coming from M and cut it off at some
nonstandard level to get t.

In the ω-nonstandard case replace the assumption that T ∈ M with the assumption that T is coded
in M . Then the above proof works. In particular, if (strong enough) T is computable then no countable
T -realizable M has a least T -realization.

It remains to see that the master lemma yields the nonexistence of least transitive models of strong
second-order set theories. Because these theories are all computably axiomatizable it is immediate that they
appear as elements of any transitive model. As such, the only thing we need to show is that these theories
prove the existence of Hyp(V ). As a warm-up let us prove that KMCC proves Hyp(V ) exists. This follows
from a stronger statement.

Proposition 4.22. Let ϕ(x, ȳ) be a first-order formula in the language of set theory. Then ZFC− proves that
for every b̄ there is an ordinal α so that for all a ∈ Lα(b̄), we have Lα(b̄) |= ϕ(a, b̄) if and only if ϕ(a, b̄)L(b̄).

Proof. This is the standard argument for reflection along the L-hierarchy. Namely, pick an ordinal α0. Given
αn let αn+1 be the least ordinal so that Lαn+1(b̄) is closed under witnesses for existential subformulae of ϕ
with parameters from Lαn(b̄). Note that we use Collection to find αn+1, since we need to collect witnesses
into a single set. Then, if α = supn αn we have caught our tail and Lα(b̄) |= ϕ(a, b̄) if and only if ϕ(a, b̄) is
true in L(b̄).

Corollary 4.23. KMCC proves that Hyp(V ) exists.

17Recall from chapter 2 that a membership code for an ordinal γ is a class well-order of ordertype γ + 1, so it makes sense
to talk about initial segments of Υ.
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Proof. Work in the unrolling, which satisfies ZFC−I . Then, since the axioms of KP are of bounded complexity,
there is α > κ, where κ is the largest cardinal, so that Lα(Vκ) |= KP. The least such α gives Hyp(Vκ). But
Vκ is the V of the original KMCC model. So there is a membership code for Hyp(V ).

But we need much less than KMCC to get the existence of Hyp(V ).

Lemma 4.24. The theory GBC− + Π1
1-CA proves the existence of Hyp(V ). Consequently any T ⊇ GBC− +

Π1
1-CA proves the existence of Hyp(V ).

See also [ABF, theorem 64] where the same result appears. (They state the result in terms of GBC+Π1
1-CA

instead of GBC− + Π1
1-CA, but nowhere does their proof use Powerset in the first-order part.)

Proof. Work with (M,X ) |= GBC−+Π1
1-CA and consider W = L(M,G) the (M,G)-constructible unrolling of

(M,X ), for some G ∈ X . Then, by results of section 2.3 we have that W = L |= ZFC−(1) + V = L(M,G).18

Moreover, there is κ ∈W so that M = (Hκ)W . We want to find α ∈W so that Lα(M) |= KP. This reduces
down to proving an instance of reflection along the L(M)-hierarchy, which I give here so the reader can see
it can be carried out in the weak theory in which we are currently working.

Every Lα(M) satisfies Σ0-Separation, so the work is in getting Σ0-Collection. We will see that there are
unboundedly many α so that Lα(M) |= Σ0-Collection. Let υ be the formula giving truth for Σ0-formulae.
Then υ is Σ1. It is convenient here to assume (without loss) that υ has four free variables, so that υ(ϕ, x, y, p)
asserts that ϕ(x, y, p) holds for a Σ0-formula ϕ. To show that Lα(M) |= Σ0-Collection it suffices to prove
the instance of Σ0-Collection for υ.

Fix arbitrary α0. By Σ1-Collection find α1 the least ordinal > α0 so that if x, p ∈ Lα0
(M) and ϕ is a

formula then there is y ∈ Lα1(M) so that υ(ϕ, x, y, p). Now repeat the process: given αn let αn+1 be the least
ordinal > αn so that if x, p ∈ Lαn(M) and ϕ is a formula then there is y ∈ Lαn+1(M) so that υ(ϕ, x, y, p).
Finally, set α = supαn, again using an instance of Σ1-Collection. Then Lα(M) |= Σ0-Collection. Since α0

was arbitrary, this proves there are unboundedly many such α.
Now take α > κ least so that Lα(M) |= KP. Then Lα(M) = Hyp(M), so (M,X ) |= Hyp(V ) exists, as

desired.

As a corollary we get the negative part of theorem 4.3.

Corollary 4.25. There is not a least transitive model of KM, nor of KM−. For k ≥ 1 there is not a least
transitive model of GBC + Π1

k-CA, nor of GBC− + Π1
k-CA. Moreover, the same holds for any computably

axiomatizable extensions of these theories.

Proof. I will state the proof in terms of KM. The same argument goes through, mutatis mutandis, for the
other theories.

Suppose for sake of a contradiction that there is a least transitive model of KM. Then it must be some
countable (M,X ) |= KMCC. By the master lemma there is a KMCC-realization Y for M so that X 6⊆ Y. So
(M,X ) is not actually least, a contradiction.

This result holds for more than just computably axiomatizable extensions. What is needed about the
extension T is that T is an element of any transitive model of T . In particular, the first-order part of T can be
complete. If Hyp(V ) exists then the truth predicate for the first-order part must exist, since Hyp(V ) |= KP
and KP proves the existence of truth predicates for set-sized structures and so any model of a second-order set
theory T ⊆ GBc− which proves the existence of Hyp(V ) must contain its (first-order) theory as an element,
since it can be obtained by restricting the truth predicate to sentences.

We also get that countable models do not have least realizations for strong theories.

Corollary 4.26. Let M |= ZFC− be countable and T an extension of GBC− + Π1
1-CA with T ∈M .19 Then

M does not have a least T -realization.

18Recall that ZFC−(1) is axiomatized by the axioms of ZFC− but with Separation and Collection restricted to Σ1-formulae.
19Or, if M is ω-nonstandard, with T coded in M . Cf. remark 4.21.
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Proof. Suppose towards a contradiction that X is the least T -realization for M . By the master lemma there
is Y 6⊆ X a T -realization for M . But this contradicts the leastness of X .

In personal communication, Ali Enayat pointed out to me an alternative argument that countable models
do not have least KM-realizations. I reproduce his argument, which goes by way of an old theorem by Barwise,
here.

Theorem 4.27. Let M |= ZFC be a countable transitive model. Then M does not have a least KM-realization.

From this it immediately follows that KM does not have a least transitive model.

Proof (Enayat): If M is not KM-realizable, then the conclusion is trivial. So work in the case where M is
KM-realizable. Recall the following theorem.

Theorem (Barwise, theorem IV.1.1 of [Bar75]). Let U be a countable structure. Let A = Hyp(U). Let T
be an LA-theory which is Σ1-definable over A and which has a model of the form B = (B,U ;E, . . .), where
E is a binary relation.20 Suppose S ⊆ U has the property that for every such model there is b ∈ B so that
S = bE = {x ∈ B : x E b}. Then S ∈ Hyp(U).

Suppose we have a model of the form (B,M ;E). Consider the theory T asserting that M forms the
first-order part of and B forms the second-order part of a model of KM with membership relation E. This
is a computable Lω,ω-theory, so in particular it is Σ1-definable over Hyp(M). Because M is KM-realizable
there is a model of T of form B = (B,M ;E). Now suppose that S ⊆ M is in every KM-realization for
M . Then if B = (B,M ;E) |= T we can find b ∈ B so that S = bE . So by Barwise’s theorem we get that
S ∈ Hyp(M).

This yields the following lemma, which is of independent interest.

Lemma 4.28. Let M |= ZFC be countable, transitive, and KM-realizable. Then the intersection of all the
KM-realizations for M is Hyp(M) ∩ P(M).

Proof. Let X be the intersection of all the KM-realizations of M . We have seen that X ⊆ Hyp(M)∩P(M).

For the other direction, take A ∈ Hyp(M) ∩ P(M). Then there is γ < OrdHyp(M) so that A ∈ Lγ(M). To
conclude that A ∈ X it is enough to know that every KM-realization for M unrolls to a structure which
is well-founded up to γ. To see that, take (M,Y) |= KM. By throwing out classes if necessary, assume
without loss that (M,Y) |= KMCC. Let W |= ZFC−I be the unrolling of (M,Y). It follows from a result of H.

Friedman [Fri73, theorem 3.1] that W , being well-founded up to at least OrdM , must have that Ordwfp(W )

at least as large as the next admissible ordinal above OrdM . But it could be that Hyp(M) is taller than the
next admissible ordinal above OrdM , so we need a small argument.

Take γ ∈ Hyp(M) an ordinal. Then there is Γ ⊆ M in Hyp(M) which is isomorphic to (γ,∈). Because
Γ ∈ Hyp(M) it is ∆1

1-definable over M—see [Bar75, corollory IV.3.4]. So Γ ∈ Y, because (M,Y) satisfies ∆1
1-

Comprehension. And since Γ is seen to be well-founded from the external universe, it must be that (M,Y)

agrees that Γ is a well-order. So the unrolling of (M,Y), namely W , must contain γ. So Ordwfp(W ) > γ,
completing the argument.

Now suppose that X = P(M) ∩ Hyp(M) is KM-realization for M . Then, because X unrolls to Hyp(M)
and KM proves that Hyp(V ) exists we get that Hyp(M) ∈ Hyp(M), a contradiction. So M cannot have a
least KM-realization.

The full strength of KM is not needed here. We used two facts about KM: first, that KM proves that
Hyp(V ) exists; and second, that KM proves ∆1

1-Comprehension. So the same argument goes through for
weaker theories theories, in particular any theory extending GBC− + Π1

1-CA.
Let me turn now to β-models, in which context we do get least models.

Theorem 4.29 (Folklore). There is a least β-model of KM, if there is any β-model of KM.

20Recall from section 4.2 that (B,U ;R0, R1, . . .) has sets B, urelements U , and additional relations R0, R1, . . ..
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Proof. First, note that it is equivalent to ask for a least β-model of KMCC, by theorem 2.47 from chapter 2.
Next, observe that if (M,X ) ⊆ (N,Y) are β-models of KMCC, then their unrollings are transitive and the
unrolling of (M,X ) must be contained in the unrolling of (N,Y). So we just have to see that there is a least
transitive model of ZFC−I . Because there is a β-model of KM, there is some transitive model of ZFC−I .

Take M |= ZFC−I transitive with largest cardinal κ. Then LM |= ZFC− + κ is inaccessible. However,
it could be that LM satisfies Powerset. (Imagine if M were obtained by class forcing over a model of
ZFC + V = L + “there is an inaccessible cardinal” to collapse all cardinals above the first inaccessible.)
Nevertheless, there is some ordinal α ∈ M so that Lα |= ZFC−I . So while ZFC−I is not absolute to L, every
transitive model of ZFC−I contains an Lα which is a model of ZFC−I .

Therefore, if α is least so that Lα |= ZFC−I then Lα is the least transitive model of ZFC−I , as desired.

This proof generalizes to a fixed first-order part. First we need a definition.

Definition 4.30. Let T be a second-order set theory and M |= ZFC−. Then X ⊆ P(M) is a β-T -realization
for M if (M,X ) |= T is a β-model. If such X exists, then M is β-T -realizable. The least β-T -realization for
M , if it exists, is the unique β-T -realization for M which is contained in every β-T -realization.

Corollary 4.31. Let M be a β-KM-realizable model of set theory with a definable global well-order. Then
M has a least β-KM-realization.

Proof. Because M is β-KM-realizable, there is a model W of ZFC−I with largest cardinal κ so that M = VWκ .

Consider α least so that Lα(M) |= ZFC−I and M = V
Lα(M)
κ . Such exists by an argument as in the proof of

the previous theorem, using the fact that M has a definable global well-order to get that Lα(M) satisfies
Choice. Then the cutting off (M,X ) for Lα(M) gives the least β-KM-realization for M .

Essentially the same argument, using tools from chapter 2, gives that there is a least β-model of GBC +
Π1
k-CA.

Theorem 4.32. Let k ≥ 1. There is a least β-model of GBC+Π1
k-CA, if there is any β-model of GBC+Π1

k-CA.

Proof. Again, this reduces to showing that there is a least transitive model of ZFC−I (k), using that β-models
of GBC + Π1

k-CA + Σ1
k-CC unroll to transitive models of ZFC−I (k).

If M |= ZFC−I (k) has largest cardinal κ then LM |= ZFC−I (k) + κ is inaccessible. So there is α ∈ M so
that Lα |= ZFC−I (k) has largest cardinal κ. Thus, if α is least so that Lα |= ZFC−I (k) then Lα is the least
transitive model of ZFC−I (k).

Corollary 4.33. Fix k ≥ 1 and let M be a β-(GBC+ Π1
k-CA)-realizable model of set theory with a definable

global well-order. Then M has a least β-(GBC + Π1
k-CA)-realization.

Proof. Essentially the same as the proof of corollary 4.31.

This is not the end of the story. Does corollary 4.31 give an exact characterization of when M has a least
β-KM-realization? (And in light of corollary 4.33 the same question can be asked about GBC + Π1

k-CA, for
k ≥ 1, instead of KM.)

Question 4.34. Suppose M |= ZFC is β-KM-realizable but does not have a definable global well-order. Can
we conclude that M does not have a least β-KM-realization?

It is Global Choice that is the possible culprit here. If we drop that from the axioms then we do always
get least realizations.

Proposition 4.35. Let KM¬GC denote KM with Choice for sets but without Global Choice. Suppose that
M |= ZFC is β-KM¬GC-realizable. Then M has a least β-KM¬GC-realization.

Proof sketch. Similar to the proof of corollary 4.31. The least β-KM¬GC-realization for M is the cut off
model obtained from Lα(M) where α is least so that Lα(M) |= ZF−I and the largest cardinal of Lα(M) is
OrdM .
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A similar fact holds for GBc + Π1
k-CA, i.e. GBC + Π1

k-CA but where we drop Global Choice.
To finish off this section, let us see that there are minimal but non-least KM-realizations. That is, there

are M |= ZFC which have a KM-realization X so that there is no KM-realization Y for M which is strictly
contained inside X . But by theorem 4.5 X cannot be least.

Observation 4.36. Suppose there is a β-model of KM. Then, there are M |= ZFC which have minimal but
non-least KM-realizations.

Proof. Let countable M |= ZFC have a definable global well-order and be β-KM-realizable. By corollary 4.31
it has a least β-KM-realization, call it X . Because any KM-realization Y ⊆ X must also give a β-model and
thus Y = X , this X is a minimal KM-realization. But as we saw earlier in this section, M does not have a
least KM-realization.

Left open is the question of when, if ever, other countable M |= ZFC have minimal but non-least KM-
realizations.

Question 4.37. Is there countable M |= ZFC which does not have a minimal KM-realization?

The same question can be asked for GBC + Π1
k-CA instead of KM.

4.4 Medium theories

I turn now to the theories of medium strength, namely GBC + ETR and its variants. The main results of
this section are that GBC+ ETR has a least β-model and that for nice enough choice of Γ that GBC+ ETRΓ

has a least transitive and a least β-model. (See the discussion around the relevant theorems in this section
for what “nice enough” means.) The major question left open is whether there is a least transitive model of
ETR.

As a starting-off point, let us see that some models have least β-(GBC + ETR)-realizations.

Theorem 4.38. Let M |= ZFC be a transitive model with a definable global well-order. Then if M has
a β-(GBC + ETR)-realization it has a least β-(GBC + ETR)-realization X . Moreover, X is also the least
(GBC + ETR)-realization of M .

Proof. Fix Y a β-(GBC + ETR)-realization for M . The strategy is to define X , which will be the least
β-(GBC+ETR)-realization for M contained inside Y. We will then see that in fact X is contained inside any
(GBC + ETR)-realization for M . In particular, if we started with a different β-realization we would define
the same X .

We define X in ω many steps. First, let X0 = Def(M). Then (M,X0) |= GBC because M has a definable
global well-order. Now given Xn ⊆ Y define Xn+1 to consist of all classes in Y which are definable from
TrΓ(A) for some Γ, A ∈ Xn. Formally,

Xn+1 =
⋃
{Def (M ; TrΓ(A)) : A,Γ ∈ Xn and Γ is a well-order} .

Because (M,Y) is a β-model, it is correct about which Γ’s are well-orders. So we could equivalently ask in
the definition of Xn+1 that (M,Y) |= Γ is a well-order. Then Xn+1 ⊆ Y is a GBC-realization for M . Finally,
set X =

⋃
n Xn. It is clear that X ⊆ Y.

Let us check that (M,X ) |= GBC + ETR. It satisfies GBC because X is the union of an increasing chain
of GBC-realizations for M . To see that it satisfies Elementary Transfinite Recursion, pick A,Γ ∈ X where
(M,X ) |= Γ is a well-order. Observe that Y agrees with X that Γ is a well-order. Since A,Γ ∈ Xn for some
n this means that TrΓ(A) ∈ Xn+1 ⊆ X .

Finally, let us see that X is contained in any (GBC + ETR)-realization Z, which will establish that X
is both the least β-(GBC + ETR)-realization for M and the least (GBC + ETR)-realization for M . Clearly,
X0 = Def(M) is contained inside Z. We continue upward inductively. Having already seen that Xn ⊆ Z,
consider Γ, A ∈ Xn. Then all three of Y, Xn, and Z must agree on which classes are well-founded and which
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classes are iterated truth predicates. And since Γ really is well-founded, externally we can see that there is
only one option for what class is the Γ-iterated truth predicate relative to A. So since (M,Z) |= ETR we
get that (TrΓ(A))(M,Z) = TrΓ(A) ∈ Xn+1 ∩Z. And since Z is closed under first-order definability, any class
definable from TrΓ(A) must be in Z. So Xn+1 ⊆ Z. This holds for all n, so X ⊆ Z, as desired.

The proof did not use Powerset. So we get a version for theories without Powerset. And the only place
we used that M has a definable global well-order was to get Global Choice in X . So we also get a version
for theories without Global Choice. The following corollary encapsulates both results.

Corollary 4.39. Let M |= ZFC− be a transitive model. Suppose M is β-(GBc−+ ETR)-realizable. Then M
has a least β-(GBc− + ETR)-realization. If M moreover has a definable global well-order then M has a least
β-(GBC− + ETR)-realization.

Observe that although Xn is always a coded V -submodel of Y, in general X need not be coded in Y. In
particular, this will happen when Y = X .

We get a version of this result for non-β-models. In this broader context we cannot ensure that different
Y’s will define the same X . But any V -submodel of (M,Y) will have to agree with (M,Y) as to what is a
well-order and whether a class is TrΓ(A). So a similar argument yields a local leastness result.

Theorem 4.40. Let M |= ZFC be (GBc + ETR)-realizable. Then M has a basis of minimal (GBc + ETR)-
realizations, where amalgamable (GBc+ ETR)-realizations21 sit above the same basis element. That is, there
is a set {Bi : i ∈ I} of (GBc + ETR)-realizations for M satisfying the following.

1. Elements of the basis are pairwise non-amalgamable;

2. If Y is any (GBc + ETR)-realization for M then there is a unique basis element B so that Y ⊇ B; and

3. If X and Y are amalgamable (GBc + ETR)-realizations for M then they sit above the same B.

See figure 4.4 for a picture of the (GBc + ETR)-realizations for M .
In case M has a definable global well-order we get a basis of minimal (GBC + ETR)-realizations, since

every GBc-realization for M must contain the definable global well-order and thereby satisfy Global Choice.

Proof. Fix Y a (GBC + ETR)-realization for M . We define the basis element B below Y similar to how we
defined X in the proof of theorem 4.38. Start with B0 = Def(M). Clearly B0 ⊆ Y is a GBc-realization for
M . Given Bn ⊆ Y a GBc-realization for M we set

Bn+1 =
⋃{

Def
(
M ; (TrΓ(A))

(M,Y)
)

: A,Γ ∈ Bn and (M,Y) |= Γ is a well-order
}
.

Some illuminating remarks are in order. First, because Bn ⊆ Y and (M,Y) |= ETR we get that for A,Γ ∈ Bn
there is a unique class in Y which (M,Y) thinks is TrΓ(A). So Bn+1 is well-defined. And since Y is closed
under first-order definability this moreover shows that Bn+1 ⊆ Y.

Next, let me emphasize that Def here is the external Def operator. This only makes a difference in case
M is an ω-model. In this case, none of the Bn will be coded in Y. Nevertheless, we still get that Bn ⊆ Y, so
that Bn+1 is well-defined.

Third, let us check that (M,Bn+1) |= GBc. I will be more detailed than in the proof of theorem 4.38
to reassure the reader who is worried things may go wrong in an ω-nonstandard model. Both Class Ex-
tensionality and Class Replacement are immediate. To see Elementary Comprehension we want to see that
Bn+1 is closed under first-order definability. It suffices to check the case where we define a class from two
class parameters, so consider X,Y ∈ Bn+1. Then, by construction, there are Γ,∆, A,B ∈ Bn so that X is
definable from (TrΓ(A))(M,Y) and Y is definable from (Tr∆(B))(M,Y). Then any class definable from X and
Y must be definable from (Trmax{Γ,∆}(A⊕B))(M,Y) ∈ Bn, where A⊕B = A× {0} ∪B × {1}. So any class
definable from X and Y is in Bn+1.

21Two T -realizations X and Y for M are amalgamable if there is a GBc−-realization Z for M so that X and Y are both
subsets of Z.
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Figure 4.4: The (GBc + ETR)-realizations for M form a disjoint collection of cones, each one with a basis
element at the bottom.

Finally, set B =
⋃
n Bn. It is immediate that B ⊆ Y. Let us see that (M,B) |= GBc + ETR. Fix Γ, A ∈ B

so that (M,B) |= Γ is a well-order. Then Γ, A ∈ Bn for some n. Because (M,Bn) is a V -submodel of (M,B)
which in turn is a V -submodel of (M,Y) they all agree as to whether Γ is a well-order and whether a class
is TrΓ(A). So

(TrΓ(A))(M,B) = (TrΓ(A))(M,Y) ∈ Bn+1 ⊆ B.

So (M,B) |= ETR.
The proof will be finished once we see that any X which is amalgamable with Y defines the same B. To

see this, take Z a GBc-realization for M which contains both X and Y. Then (M,Y) and (M,Z) must agree
whether a class is a well-order and whether a class is TrΓ(A) and the same holds for (M,X ) and (M,Z), so
in fact all three agree. Clearly B0 is the same whether defined used Y or X . And inductively upward they
must agree on Bn because they agree as to whether a class is TrΓ(A). So no matter whether we start with
X or Y we define the same basis element B.

It follows from theorem 4.38 that if M has a β-(GBC + ETR)-realization then there is only one basis
element in the poset of (GBC + ETR)-realizations for M . Does this hold in general?

Question 4.41. Is there a (GBc+ETR)-realizable model M so that the basis for the (GBc+ETR)-realizations
for M has more than one element? Or, asked in the negative, is it true that every (GBc + ETR)-realizable
model has a least (GBc + ETR)-realization?

Let me detour to discuss fragments of ETR. Essentially the same argument as in theorem 4.38 gives that
GBC+ETRΓ will have least β-realizations. For example, to show that a β-(GBC+ETRΓ)-realizable model M
with a definable global well-order has a least β-(GBC + ETRΓ)-realization we define X in a similar manner.
Set X0 = Def(M ; Γ). The definition for Xn+1 is then

Xn+1 =
⋃
{Def (M ; TrΓ(A)) : A ∈ Xn}

where Y is some fixed-in-advance β-(GBC + ETRΓ)-realization for M . Observe that Γ here really is well-
founded, because a β-model thinks it is well-founded, so TrΓ(A) is externally seen to be unique. Then
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X =
⋃
n Xn will be the least β-(GBC+ETRΓ)-realization for M . This gives us the following results, analogous

to the above results about ETR.

Theorem 4.42. Suppose (M,Y) |= GBC + ETRΓ is an β-model with a definable global well-order and
ωω ≤ Γ ∈ Y. Then M has a least β-(GBC+ETRΓ)-realization X . Moreover, X is also the least (GBC+ETRΓ)-
realization for M .

Remark 4.43. The purpose of requiring Γ ≥ ωω is that this ensures ETRΓ is equivalent to the existence of
Γ-iterated truth predicates relative to any class. The same applies to later results about ETRΓ, but I will
suppress making this comment every time.

Since we are concerned only with a fixed Γ, we can get a least (GBC + ETRΓ)-realization even if our
M |= ZFC has realizations which are wrong about well-foundedness. All that matters is whether they are
correct about Γ being well-founded.

Theorem 4.44. Consider an ω-model (M,Y) |= GBC and Γ ∈ Y so that Γ ≥ ωω really is well-founded,
as seen externally. Suppose M has a definable global well-order and (M,Y) |= ETRΓ. Then M has a least
(GBC + ETRΓ)-realization.

If M is ill-founded then this works for Γ of length in the well-founded part of M .22 If M is transitive then
we can go up to OrdM , and even longer. For transitive M we always get that OrdM + OrdM , OrdM ·OrdM ,
and so on are well-founded.

And like before, for non-β-models we get a local leastness result, even if (M,Y) is wrong about Γ being
well-founded.

Corollary 4.45. Suppose (M,Y) |= GBC + ETRΓ has a definable global well-order and (M,Y) |= ωω ≤ Γ.
Then M has an (GBC + ETRΓ)-realization which is least below Y.

We are now ready to see that GBC + ETR has a least β-model.

Theorem 4.46. There is a least β-model of GBC + ETR, if there is any β-model of GBC + ETR.

Proof. The least β-model of GBC+ETR will be the least β-(GBC+ETR)-realizable Lα along with its least β-
(GBC+ETR)-realization. First though we have to know that if M is β-(GBC+ETR)-realizable then so is LM .
We saw in chapter 3 that M being (GBC + ETR)-realizable implies that LM is also (GBC + ETR)-realizable.
More specifically, if (M,X ) |= GBC + ETR then there is Y ⊆ X ∩ P(LM ) so that (LM ,Y) |= GBC + ETR. If
(M,X ) is a β-model then so is (LM ,Y), by observation 4.11. Therefore, if there is a β-model of GBC+ ETR
then Lα is β-(GBC + ETR)-realizable where α is the least height of a β-model of GBC + ETR.

Now let X be the least β-(GBC + ETR)-realization for Lα, which exists by theorem 4.38. We want to
see that (Lα,X ) is contained inside every β-model of GBC + ETR. Fix (N,Y) |= GBC + ETR a β-model.
If OrdN = α, then theorem 4.38 yields that X ⊆ Y. If OrdN > α then Lα ∈ N and thus N can construct
X as in theorem 4.38 by ordinary transfinite recursion on sets. That is, N starts with X0 = Def(Lα).
Then given Xn add in all the classes definable from TrΓ(A) for Γ, A ∈ Xn to get Xn+1. This makes sense,
because each (Lα,Xn) is a β-model, as can be seen externally from V , and thus in N as N is correct about
well-foundedness. Then X =

⋃
n Xn must be in N , as otherwise would imply that N does not satisfy an

instance of Replacement. Thus, (Lα,X ) ⊆ (N,Y)

Essentially the same argument gives least β-models for GBC + ETRΓ. But first a subtlety needs to be
cleared up. When dealing with a fixed model with a fixed class well-order Γ it was sensical to ask whether
it satisfies ETRΓ. However, this will not work if we do not have a fixed model in mind. How are we even to
express ETRΓ as an L∈-theory?

22This explains why I restricted the statement of the theorem to ω-models. If M is ω-nonstandard and (M,Y) |= Γ ≥ ωω

then Γ must seen from outside to be ill-founded. Nevertheless, the conclusion of the theorem is still true if Γ is in the well-
founded part of ω-nonstandard M , because in such a case Γ is standard finite and ETRn for standard finite n is equivalent to
Elementary Comprehension. So in this case it is just asking for M to have a least GBC-realization, which indeed does happen
if M has a definable global well-order.
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What we can do is ask that Γ be given some definition which evaluated in a model of GBC always gives a
well-order. For instance, Γ could be Ord or ω1. Then, although different models may disagree on what Γ is,
ETRΓ can be expressed as an L∈ theory. To distinguish this case from when Γ is a literal class in a model
and ETRΓ is expressed as an L∈(Γ)-theory I will talk of Γ being given by a definition. For example, if I say
that Γ is given by a first-order definition I mean that there is a certain first-order L∈-formula ϕ(x, y) so that
GBC proves that the class defined by ϕ(x, y) is a well-order. If (M,X ) |= GBC then I will write Γ(M,X ) for
the well-order in X given by applying the definition of Γ inside (M,X ). In case Γ is given by a first-order
definition I will simply write ΓM , as the evaluation depends only upon M .

Theorem 4.47. Let Γ ≥ ωω be given by a first-order definition without parameters.23 Assume that Γ is

necessarily absolute to L, meaning that if any (M,X ) |= GBC then ΓL
M

= ΓM . If there is a β-model of
GBC + ETRΓ then there is a least β-model of GBC + ETRΓ.

I will explain after the proof why we need the absoluteness condition on Γ. For now, observe that the
condition can be ensured for many ordertypes of interest, e.g. ωω, Ord, Ord + Ord, and so on. One can give
a definition for a well-order of ordertype, e.g., Ord + Ord which is not absolute to L. For example: “If 0]

exists then Γ is Ord followed by Ord × {0]} (with the obvious order) and if 0] does not exist then Γ is the
even ordinals followed by the odd ordinals.” But there is a perfectly good definition of Γ with ordertype
Ord + Ord which is absolute to L.

Proof. Let α be least such that there is a β-(GBC + ETRΓ)-realizable M of height α. By theorem 3.16 we
can conclude Lα is (GBC + ETRΓ)-realizable. This uses that Γ is absolute to L, as the result in chapter 3
was for Γ being a fixed well-order, rather than being given by a definition. Absoluteness to L ensures that
M and Lα have the same Γ. By theorem 4.42 we have X the least β-(GBC+ETRΓ)-realization for Lα. This
uses that Γ is defined by a first-order formula, so we get the same well-order regardless of what collection of
classes we put on Lα.

It remains only to see that (Lα,X ) is the least β-model of GBC + ETRΓ. Take (N,Y) a β-model of
GBC+ETRΓ. There are two cases. First, consider the case OrdN = α. Then ΓN = ΓLα . We saw in theorem
3.16 that there is Ȳ ⊆ Y so that (Lα, Ȳ) ⊆ (N,Y). So, by the leastness of X we get (Lα,X ) ⊆ (Lα, Ȳ) ⊆
(N,Y). Second, consider the case OrdN > α. Then Lα ∈ N so ΓLα ∈ N and N can build X by ordinary
transfinite recursion. So X ∈ N and thus (Lα,X ) ⊆ (N,Y).

Let me now give an example to explain why we want to require Γ to be absolute to L. Consider Γ defined
by: “If V = L then Γ = Ord and if V 6= L then Γ = ωω.” Let us see that ETRΓ does not have a least β-model.
Take α least so that there is a β-model of GBC+ETRωω of height α. Then α must be countable. Let x and y
be mutually generic Cohen-reals over Lα. Then Lα[x] and Lα[y] have least β-ETRΓ-realizations, call them X
and Y respectively. But there is no β-model of ETRΓ which is contained in both (Lα[x],X ) and (Lα[y],Y).
By leastness of α, such a model would have to have height α. But Lα[x]∩Lα[y] = Lα by mutual genericity,
so the first-order part of such a model would have to be Lα. However Lα is not β-(GBC + ETRΓ)-realizable
because ΓLα = OrdLα and GBC + ETROrd proves there is a set-sized β-model of ETRωω .24 So if Lα were
β-(GBC + ETRΓ)-realizable that would contradict the leastness of α.

Requiring Γ to be absolute to L rules out definitions like this one.
This argument only needs that the models are correct about their Γ being well-founded. So if Γ is given

by a definition which interpreted in any transitive model gives a relation which really is a well-order, then
we can get a least transitive model of GBC + ETRΓ.

Theorem 4.48. Let Γ ≥ ωω be given by a first-order definition without parameters. Assume the following.

1. Γ is absolute to L, meaning that if (M,X ) |= GBC then ΓL
M

= ΓM ; and

2. If (M,X ) |= GBC is transitive then ΓM really is well-founded, as seen externally.

23That is, GBC proves that Γ ≥ ωω .
24This is because GBC + ETROrd proves there is a coded V -submodel of ETRωω and this can be reflected down to get a

set-sized β-model of ETRωω .
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Then, if there is a β-model of GBC + ETRΓ there is a least transitive model of GBC + ETRΓ.

As particular cases of interest, this works when Γ = Ord or Γ is a given by a definition for a (set-sized)
ordinal.

Left open is how high up this can be pushed. Can it be pushed all the way up to ETR?

Question 4.49 (Open). Is there a least transitive model of GBC + ETR?

Let me note this question is not immediately settled by master lemma 4.20.

Proposition 4.50. The theory GBC+ETR does not prove that Hyp(V ) exists, assuming that it is consistent.

Proof. Suppose (M,X ) |= GBC+ETR+Hyp(V ) exists. (If there is no such model, then we are already done.)
By shrinking down to an inner model if necessary, assume without loss that M has a definable global well-
order. Unroll (M,X ) to W . From the results in chapter 2, we get that W satisfies Σ0-Transfinite Recursion.
Now let Y = {A ∈W : W |= A ∈ Hyp(M) and A ⊆M} consist of the classes of M which are in Hyp(M)W .
Then Y is closed under first-order definability, so it satisfies Elementary Comprehension. It satisfies Class
Replacement because it is a V -submodel of a model of GBC. Class Extensionality is obvious and Global
Choice holds because M has a definable global well-order. Altogether, we have seen that (M,Y) |= GBC.
But it also must satisfy ETR, because Hyp(M)W |= KP and KP proves Σ0-Transfinite Recursion. But
(M,Y) 6|= Hyp(V ) exists, by construction. so GBC + ETR does not prove that Hyp(V ) exists.

Let me mention a couple related questions. The first question was also asked at the end of chapter 2.

Question 4.51. Let τ(GBC+ETR) be the least height of a transitive model of GBC+ETR and let β(GBC+
ETR) be the least height of a β-model of GBC+ETR. Can we conclude that τ(GBC+ETR) < β(GBC+ETR)?

If the answer is no, then there is a least transitive model of GBC+ETR, which would be the same as the
least β-model of GBC + ETR.

Question 4.52. Can there be M |= ZFC which is (GBC+ETR)-realizable with a class well-order Γ ∈ Def(M)

so that there are two different (GBC + ETR)-realizations X and Y for M so that Tr
(M,X )
Γ 6= Tr

(M,Y)
Γ ? What

if we restrict to countable M?

It follows from theorem 4.38 that this cannot happen if M has a β-(GBC + ETR)-realization.

4.5 Weak theories

The results in this section are either old or appeared in chapter 1. I state them here to round out the
presentation in this chapter.

Let us start with a classical result.

Theorem 4.53 (Shepherdson [She53]). There is a least transitive model of GBC, if there is any transitive
model of GBC.

Proof. Let Lα be the least transitive model of ZFC. Then (Lα,Def(Lα)) is the least transitive model of
GBC.

A slight modification also gives a least β-model.

Corollary 4.54. There is a least β-model of GBC, if there is any β-model of GBC.

Proof. First, observe that if (M,X ) is a β-model of GBC then (LM ,Def(LM )) is also a β-model of GBC. This
is because (Lα,Def(Lα)) is always a model of GBC and because Ord-submodels of β-models are β-models.

Now let α be least such that there is a β-model of GBC of height α. Then (Lα,Def(Lα)) is the least
β-model of GBC.
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As with the case for ETR, it is not clear to me that these are actually two different results.

Question 4.55. Is the height of the least transitive model of GBC less than the height of the least β-model
of GBC? Phrased differently, is the least transitive model of GBC a β-model?

We can also characterize when a countable model of ZFC has a least GBC-realization.

Theorem 4.56. Let M |= ZFC be countable. Then the following are equivalent.

1. M has a least GBC-realization.

2. M has a definable global well-order.

3. M |= ∃x V = HOD({x}).

Proof. (1⇔ 2) was theorem 1.61.(3) from chapter 1. (2⇔ 3) is a well-known fact.25

4.6 Coda: the analogy to second-order arithmetic

Several times throughout the course of this dissertation we have touched upon the analogy between second-
order set theory and second-order arithmetic. Now that we are done with the major results I would like to
flesh this analogy out more fully. Let us begin by seeing how the theories line up.

Arithmetic Set theory
Z2 KM

Π1
1-CA0 Π1

1-CA
ATR0 ETR
ACA0 GBC
WKL0

RCA0

Figure 4.5: Arithmetic versus set theory.

It’s well-known that PA is bi-interpretable with finite set theory ZFC¬∞, i.e. ZFC with Infinity replaced
with its negation.26 This bi-interpretability carries over for second-order set theories so that e.g. ACA0 and
GBC¬∞ are bi-interpretable. So the analogy here is really between the finite and the transfinite.

Let me briefly address the gap in the table. First, WKL0. Enayat and Hamkins [EH] proved that (in ZFC)
there is a definable Ord-tree whose levels are all set-sized with no definable branch. Consequently, GBC does
not prove the analog of Kőnig’s lemma for Ord-trees instead of ω-trees. So it is not clear how tree properties
on ω—such as weak Kőnig’s lemma or Kőnig’s lemma—could be generalized to this context. For RCA0,
different ways of thinking of computability suggests different generalizations to set theory. First, consider
the view that computable = ∆1. With this view in mind, the set theoretic counterpart to RCA0 would be
based upon ∆0

1-Comprehension. Second, take the view that computable means verifiable and refutable by
only looking at a bounded segment of the universe. By this view, the set theoretic counterpart to RCA0

would be based upon ∆0
2-Comprehension, as the ∆2 properties are precisely those which are verifiable and

refutable by looking at a rank-initial segment of the universe. Which of these two counterparts is the ‘correct’
one would depend upon the mathematics one can do with them. If, say, ∆0

2-Comprehension allows us to do
a lot of interesting mathematics but ∆0

1-Comprehension does not, then we would have reason to prefer one

25The reason for using HOD({x}) instead of HOD is that we want to possibly allow parameters for the definition of the
global well-order.

26Note that, however, this is sensitive to how Foundation is formulated, as formulations equivalent over infinitary set theory
are not equivalent over finite set theory. So finite set theory should be understood as formulated with the right version of
Foundation. See [KW07] for a discussion.
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over the other. But we cannot make such a call before actually doing that mathematics. For now, it is not
clear what the set theoretic counterpart to RCA0 should be.

That aside, let us return to where there are no gaps. Some results about models of arithmetic have direct
generalizations to results about models of set theory. For example, it is well-known that every model of
arithmetic has a least ACA0-realization. The set theoretic counterpart to this fact is that every model of
ZFC with a definable global well-order has a least GBC-realization. We also get counterparts to results about
strong theories. That KM has a least β-model but no least transitive model is the transfinite analog of the
folklore fact that Z2 has a least β-model and H. Friedman’s theorem [Fri73] that Z2 has no least ω-model.

But disanalogies appear at the level of GBC + ETR versus ATR0. We have seen that GBC + ETR has a
least β-model. On the other hand, ATR0 has neither a least ω-model nor a least β-model—see [Sim09]. Let
us explore this disanalogy further. The main culprit here is the property “X is a well-order”. In set theory,
this is a first-order assertion. Whether X is a well-order is determined by a countable piece of information,
so is witnessed by the (non)existence of certain sets, not proper classes. On the other hand, in arithmetic
it is a second-order assertion to say that X is a well-order, since infinite sequences are second-order objects
in the arithmetic context. Indeed, “X is a well-order” is Π1

1-universal in arithmetic, so which classes are
well-ordered is very much caught up in the second-order part of the model.

Another disanalogy concerns the existence of Hyp(V ). It is well-known that Hyp(Vω) = LωCK
1

, where

ωCK
1 is the least non-computable ordinal. So ATR0 suffices to prove that Hyp(V ) is coded27 because ωCK

1

is arithmetical and so we can do a transfinite recursion along it to produce the L-hierarchy. Indeed, the
intersection of all the β-models of ATR0 is the collection of hyperarithmetical sets, those reals appearing in
LωCK

1
—see [Sim09]. (And the same is true if we consider ω-models instead of β-models.) But in the set

theoretic context, we have seen that GBC + ETR does not suffice to prove that Hyp(V ) is coded.
More disanalogies are known. To pick one last example, in arithmetic Clopen Determinacy and Open

Determinacy are both equivalent to ATR0, a result originating in Steel’s dissertation [Ste76]. In set theory,
Clopen Determinacy (for class games) is equivalent (over GBC) to ETR [GH17]. But Open Determinacy is
strictly stronger [Hac16].

These suggest that the emerging field of reverse mathematics of second-order set theory should reveal a
landscape with some differences from that of reverse mathematics of arithmetic. As further evidence pointing
toward this, in the set theoretic context a fragment of ETR captures natural mathematical principles. Gitman,
Hamkins, Holy, Schlicht, and myself showed [GHHSW17] that ETROrd is equivalent (over GBC) to the class
forcing theorem and several other natural statements. On the other hand, the same does not happen for
fragments of ATR0.

More speculatively, work in second-order set theory might shed some light, even if only privatively, on the
project of reverse mathematics in second-order arithmetic. Each of the Big Five subsystems of second-order
arithmetic roughly corresponds to a philosophical position. (Cf. chapter I of [Sim09].) For example, ATR0

corresponds to predicative reductionism, where “predicative” here means “predicative given ω”. We could
instead ask about predicativism given V , or given Hω1

, or some other object. This project has already been
taken up, e.g. by Sato [Sat14]. The disanalogies between ETR and ATR0 suggest that starting from the finite
realm has a large impact on predicativism and related projects. If we take the transfinite as our starting
point then we end up with a very different theory. On the other hand, where we do seen an analogy between
second-order arithmetic and second-order set theory it suggests that there the role of the finite versus the
transfinite is not so vital.

In short, work in second-order set theory may help clarify what in reverse mathematics (of arithmetic)
relies essentially upon the first-order domain consisting of finite objects.

27Remember that in arithmetic, V is Vω !
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