A nonstandard approach to integer combinatorics

Kameryn J. Williams
they/them
Bard College at Simon's Rock
Boise State TATERS 2023 Nov 17

Joint work with Timothy Trujillo (Sam Houston State University)

A nuanced and detailed history of the calculus

A nuanced and detailed history of the calculus

"Using infinitesimals I can do differentiation and integration"

A nuanced and detailed history of the calculus

> "Using infinitesimals I can do differentiation and integration"

A nuanced and detailed history of the calculus

"Using infinitesimals I can do differentiation and integration"

Nonstandard analysis in a nutshell

Use the model-theoretic notion of an ultrapower to embed \mathbb{R} into a saturated elementary extension ${ }^{*} \mathbb{R}$.

- Any standard object f on \mathbb{R} has a nonstandard extension ${ }^{*} f$ with the same elementary properties.
- You can transfer properties in $* \mathbb{R}$ back to \mathbb{R}.

Nonstandard analysis in a nutshell

Use the model-theoretic notion of an ultrapower to embed \mathbb{R} into a saturated elementary extension ${ }^{*} \mathbb{R}$.

- Any standard object f on \mathbb{R} has a nonstandard extension * f with the same elementary properties.
- You can transfer properties in ${ }^{*} \mathbb{R}$ back to \mathbb{R}.

The first big new result using NSA was:

- (Bernstein \& Robinson 1966) Any polynomially compact operator on a Hilbert space has an invariant subspace.

It's not just for analysts

- Looking at an embedding $\mathfrak{A} \hookrightarrow{ }^{*} \mathfrak{A}$ can be done for any mathematical structure \mathfrak{A}.
- For example, Robinson and others figured out how to express basic topological properties like compactness in terms of embedding a topological space X into ${ }^{*} X$.

It's not just for analysts

- Looking at an embedding $\mathfrak{A} \hookrightarrow{ }^{*} \mathfrak{A}$ can be done for any mathematical structure \mathfrak{A}.
- For example, Robinson and others figured out how to express basic topological properties like compactness in terms of embedding a topological space X into ${ }^{*} X$.
- This isn't always useful.

It's not just for analysts

- Looking at an embedding $\mathfrak{A} \hookrightarrow{ }^{*} \mathfrak{A}$ can be done for any mathematical structure \mathfrak{A}.
- For example, Robinson and others figured out how to express basic topological properties like compactness in terms of embedding a topological space X into ${ }^{*} X$.
- This isn't always useful.
- But one place it's been fruitful is in integer combinatorics.
- (Jin's sumset theorem, 2001) If $A, B \subseteq \mathbb{N}$ have positive Banach density then $A+B$ is piecewise syndetic.

It's not just for analysts

- Looking at an embedding $\mathfrak{A} \hookrightarrow{ }^{*} \mathfrak{A}$ can be done for any mathematical structure \mathfrak{A}.
- For example, Robinson and others figured out how to express basic topological properties like compactness in terms of embedding a topological space X into ${ }^{*} X$.
- This isn't always useful.
- But one place it's been fruitful is in integer combinatorics.
- (Jin's sumset theorem, 2001) If $A, B \subseteq \mathbb{N}$ have positive Banach density then $A+B$ is piecewise syndetic.

This is the application of nonstandard methods we'll care about for the rest of the hour.

What does $* \mathbb{N}$ even look like?

$* \mathbb{N}$ is a discretely ordered semiring.
Elementarity: Any property of \mathbb{N} expressed just by quantifying over numbers is true in * \mathbb{N}.
\qquad

What does $* \mathbb{N}$ even look like?

$* \mathbb{N}$ is a discretely ordered semiring.
Elementarity: Any property of \mathbb{N} expressed just by quantifying over numbers is true in $* \mathbb{N}$.

* \mathbb{N} has the additive identity 0 as its least element, because $\forall n 0 \leq n$ is true in \mathbb{N}.

What does $* \mathbb{N}$ even look like?

$* \mathbb{N}$ is a discretely ordered semiring.
Elementarity: Any property of \mathbb{N} expressed just by quantifying over numbers is true in * \mathbb{N}.

What does $* \mathbb{N}$ even look like?

$* \mathbb{N}$ is a discretely ordered semiring.
Elementarity: Any property of \mathbb{N} expressed just by quantifying over numbers is true in ${ }^{*} \mathbb{N}$.

What does $* \mathbb{N}$ even look like?

$* \mathbb{N}$ is a discretely ordered semiring.
Elementarity: Any property of \mathbb{N} expressed just by quantifying over numbers is true in ${ }^{*} \mathbb{N}$.

" $\forall n n<3$ iff $n=0$ or $n=1$ or $n=1+1$ " is true in \mathbb{N}

What does $* \mathbb{N}$ even look like?

$* \mathbb{N}$ is a discretely ordered semiring.
Elementarity: Any property of \mathbb{N} expressed just by quantifying over numbers is true in ${ }^{*} \mathbb{N}$.

What does $* \mathbb{N}$ even look like?

$* \mathbb{N}$ is a discretely ordered semiring.
Elementarity: Any property of \mathbb{N} expressed just by quantifying over numbers is true in * \mathbb{N}.

\mathbb{N} embeds as an initial segment into $* \mathbb{N}$. The new elements are all hyperfinite.

What does $* \mathbb{N}$ even look like?

$* \mathbb{N}$ is a discretely ordered semiring.
Elementarity: Any property of \mathbb{N} expressed just by quantifying over numbers is true in ${ }^{*} \mathbb{N}$.

If $\alpha \in{ }^{*} \mathbb{N} \backslash \mathbb{N}$ then $\alpha>n$ for all $n \in \mathbb{N}$.

What does $* \mathbb{N}$ even look like?

$* \mathbb{N}$ is a discretely ordered semiring.
Elementarity: Any property of \mathbb{N} expressed just by quantifying over numbers is true in ${ }^{*} \mathbb{N}$.

All non-zero elements have a predecessor

What does $* \mathbb{N}$ even look like?

* \mathbb{N} is a discretely ordered semiring.

Elementarity: Any property of \mathbb{N} expressed just by quantifying over numbers is true in ${ }^{*} \mathbb{N}$.

$\alpha+n<\alpha+\alpha=2 \alpha$ for all $n \in \mathbb{N}$.

What does $* \mathbb{N}$ even look like?

$* \mathbb{N}$ is a discretely ordered semiring.
Elementarity: Any property of \mathbb{N} expressed just by quantifying over numbers is true in ${ }^{*} \mathbb{N}$.

What does $* \mathbb{N}$ even look like?

$* \mathbb{N}$ is a discretely ordered semiring.
Elementarity: Any property of \mathbb{N} expressed just by quantifying over numbers is true in ${ }^{*} \mathbb{N}$.

What does $* \mathbb{N}$ even look like?

$* \mathbb{N}$ is a discretely ordered semiring.
Elementarity: Any property of \mathbb{N} expressed just by quantifying over numbers is true in ${ }^{*} \mathbb{N}$.

What does *N even look like?

* \mathbb{N} is a discretely ordered semiring.

Elementarity: Any property of \mathbb{N} expressed just by quantifying over numbers is true in *N.

What does $* \mathbb{N}$ even look like?

* \mathbb{N} is a discretely ordered semiring.

Elementarity: Any property of \mathbb{N} expressed just by quantifying over numbers is true in $* \mathbb{N}$. Saturation: If a sequence of elementary properties $\varphi_{0}(x), \varphi_{1}(x), \ldots$ is finitely consistent in \mathbb{N}, then you can find nonstandard α so all $\varphi_{n}(\alpha)$ hold simultaneously.

What does $* \mathbb{N}$ even look like?

* \mathbb{N} is a discretely ordered semiring.

Elementarity: Any property of \mathbb{N} expressed just by quantifying over numbers is true in $* \mathbb{N}$. Saturation: If a sequence of elementary properties $\varphi_{0}(x), \varphi_{1}(x), \ldots$ is finitely consistent in \mathbb{N}, then you can find nonstandard α so all $\varphi_{n}(\alpha)$ hold simultaneously.

If $P \subseteq \mathbb{N}$ is your favorite set of primes, there's nonstandard α so that $p \mid \alpha$ iff $p \in P$.

What does $* \mathbb{N}$ even look like?

* \mathbb{N} is a discretely ordered semiring.

Elementarity: Any property of \mathbb{N} expressed just by quantifying over numbers is true in $* \mathbb{N}$. Saturation: If a sequence of elementary properties $\varphi_{0}(x), \varphi_{1}(x), \ldots$ is finitely consistent in \mathbb{N}, then you can find nonstandard α so all $\varphi_{n}(\alpha)$ hold simultaneously.

If $P \subseteq \mathbb{N}$ is your favorite set of primes, there's nonstandard α so that $p \mid \alpha$ iff $p \in P$. Therefore * \mathbb{N} is uncountable.

Some important transfer properties

- Elementarity: Any property of \mathbb{N} you can express just by quantifying over numbers is true in ${ }^{*} \mathbb{N}$.
- Saturation: If a sequence of elementary properties $\varphi_{0}(x), \varphi_{1}(x), \ldots$ is finitely consistent in \mathbb{N}, then you can find nonstandard α so all $\varphi_{n}(\alpha)$ hold simultaneously.

Some important transfer properties

- Elementarity: Any property of \mathbb{N} you can express just by quantifying over numbers is true in ${ }^{*} \mathbb{N}$.
- Saturation: If a sequence of elementary properties $\varphi_{0}(x), \varphi_{1}(x), \ldots$ is finitely consistent in \mathbb{N}, then you can find nonstandard α so all $\varphi_{n}(\alpha)$ hold simultaneously.

Useful special cases of elementarity:

- Preservation of partitions: If $\Pi=\left\{X_{0}, \ldots, X_{n}\right\}$ is a finite partition of \mathbb{N}, then ${ }^{*} \Pi=\left\{{ }^{*} X_{0}, \ldots,{ }^{*} X_{n}\right\}$ is a finite partition of ${ }^{*} \mathbb{N}$.
- Characterization of infinite: $X \subseteq \mathbb{N}$ is infinite iff there is some nonstandard $\alpha \in{ }^{*} X$.
- Preservation of finiteness:

If X is finite then so is ${ }^{*} X=\left\{{ }^{*} x: x \in X\right\}$.

Enough preliminaries, let's take this for a drive

The pigeonhole principle

```
Theorem (Pigeonhole Principle)
If you partition \mathbb{N}\mathrm{ into finitely many pieces}
X0,\ldots,\mp@subsup{X}{n}{}}\mathrm{ then one of the pieces is
infinite.
```


The pigeonhole principle

Theorem (Pigeonhole Principle)

If you partition \mathbb{N} into finitely many pieces X_{0}, \ldots, X_{n} then one of the pieces is infinite.

Proof:

- Consider $\alpha \in{ }^{*} \mathbb{N} \backslash \mathbb{N}$.
- ${ }^{*} X_{0}, \ldots,{ }^{*} X_{n}$ are a partition of ${ }^{*} \mathbb{N}$.
- So α is in some ${ }^{*} X_{i}$.

- So X_{i} is infinite.

Iterating the * map

I lied earlier when I said nonstandard methods work by embedding \mathbb{N} into *N.

Iterating the * map

I lied earlier when I said nonstandard methods work by embedding \mathbb{N} into *N.

- Actually we embed $V_{\omega}(\mathbb{N})$ into a
saturated elementary extension.
- $\mathrm{V}_{\omega}(\mathbb{N})=\mathbb{N} \cup \mathcal{P}(\mathbb{N}) \cup \mathcal{P}(\mathcal{P}(\mathbb{N})) \cup \cdots$
- The ultrafilter used to construct the extension is an element of $V_{\omega}(\mathbb{N})$.
- So ${ }^{*} V_{\omega}(\mathbb{N})$ is a subset of $V_{\omega}(\mathbb{N})$.
- So ${ }^{*} \mathbb{N}$ is in the domain of the embedding.
- We can apply the * map to ${ }^{*} \mathbb{N}$ itself.
- If $\alpha \in{ }^{*} \mathbb{N} \backslash \mathbb{N}$ then $\alpha<^{*} \alpha$.
- And we can iterate:

$$
\mathbb{N} \hookrightarrow{ }^{*} \mathbb{N} \hookrightarrow{ }^{*(2)} \mathbb{N} \hookrightarrow \cdots \hookrightarrow{ }^{*(k)} \mathbb{N} \hookrightarrow \cdots
$$

Ramsey's theorem

Theorem (Ramsey 1930)

Partition $[\mathbb{N}]^{k}$ into finitely many pieces X_{0}, \ldots, X_{n}. Then there is infinite $H \subseteq \mathbb{N}$ so that $[H]^{k} \subseteq X_{i}$ for some i.

Ramsey's theorem

Theorem (Ramsey 1930)

Partition $[\mathbb{N}]^{k}$ into finitely many pieces X_{0}, \ldots, X_{n}. Then there is infinite $H \subseteq \mathbb{N}$ so that $[H]^{k} \subseteq X_{i}$ for some i.

Proof ($k=3$):

- Consider $\alpha \in{ }^{*} \mathbb{N} \backslash \mathbb{N}$.
- Then $\left\langle\alpha,{ }^{*} \alpha,{ }^{*(2)} \alpha\right\rangle$ is in some ${ }^{*(3)} X_{i}$.
- $A_{\emptyset}=\left\{a \in \mathbb{N}:\left\langle a, \alpha,{ }^{*} \alpha\right\rangle \in{ }^{*(2)} X_{i}\right\}$.
- ${ }^{*} A_{\emptyset}=\left\{a \in{ }^{*} \mathbb{N}:\left\langle a,{ }^{*} \alpha,{ }^{*(2)} \alpha\right\rangle \in{ }^{*(3)} X_{i}\right\}$.
- $\alpha \in{ }^{*} A_{\emptyset}$, so A_{\emptyset} is infinite
- h_{0} is the minimum member of A_{\emptyset}.

Ramsey's theorem

Theorem (Ramsey 1930)

Partition $[\mathbb{N}]^{k}$ into finitely many pieces X_{0}, \ldots, X_{n}. Then there is infinite $H \subseteq \mathbb{N}$ so that $[H]^{k} \subseteq X_{i}$ for some i.

Proof ($k=3$):

- Consider $\alpha \in{ }^{*} \mathbb{N} \backslash \mathbb{N}$.
- Then $\left\langle\alpha,{ }^{*} \alpha,{ }^{*(2)} \alpha\right\rangle$ is in some ${ }^{*(3)} X_{i}$.
- $A_{\emptyset}=\left\{a \in \mathbb{N}:\left\langle a, \alpha,{ }^{*} \alpha\right\rangle \in{ }^{*(2)} X_{i}\right\}$.
- ${ }^{*} A_{\emptyset}=\left\{a \in{ }^{*} \mathbb{N}:\left\langle a,{ }^{*} \alpha,{ }^{*(2)} \alpha\right\rangle \in{ }^{*(3)} X_{i}\right\}$.
- $\alpha \in{ }^{*} A_{\emptyset}$, so A_{\emptyset} is infinite
- h_{0} is the minimum member of A_{\emptyset}.

Do an induction:

- Already built $H_{i}=\left\langle h_{0}, \ldots, h_{i}\right\rangle$.
- $t \in\left[H_{i}\right]^{2}: A_{t}=\left\{a \in \mathbb{N}: t^{\wedge} a \in X_{i}\right\}$.
- $t \in\left[H_{i}\right]^{1}: A_{t}=\left\{a \in \mathbb{N}: t^{\wedge}\langle a, \alpha\rangle \in{ }^{*} X_{i}\right\}$.
- Inductively, $\alpha \in{ }^{*} A_{t}$ for each $t \in\left[H_{i}\right]^{<3}$.

Ramsey's theorem

Theorem (Ramsey 1930)

Partition $[\mathbb{N}]^{k}$ into finitely many pieces X_{0}, \ldots, X_{n}. Then there is infinite $H \subseteq \mathbb{N}$ so that $[H]^{k} \subseteq X_{i}$ for some i.

Proof ($k=3$):

- Consider $\alpha \in{ }^{*} \mathbb{N} \backslash \mathbb{N}$.
- Then $\left\langle\alpha,{ }^{*} \alpha,{ }^{*(2)} \alpha\right\rangle$ is in some ${ }^{*(3)} X_{i}$.
- $A_{\emptyset}=\left\{a \in \mathbb{N}:\left\langle a, \alpha,{ }^{*} \alpha\right\rangle \in{ }^{*(2)} X_{i}\right\}$.
- ${ }^{*} A_{\emptyset}=\left\{a \in{ }^{*} \mathbb{N}:\left\langle a,{ }^{*} \alpha,{ }^{*(2)} \alpha\right\rangle \in{ }^{*(3)} X_{i}\right\}$.
- $\alpha \in{ }^{*} A_{\emptyset}$, so A_{\emptyset} is infinite
- h_{0} is the minimum member of A_{\emptyset}.

Do an induction:

- Already built $H_{i}=\left\langle h_{0}, \ldots, h_{i}\right\rangle$.
- $t \in\left[H_{i}\right]^{2}: A_{t}=\left\{a \in \mathbb{N}: t^{\wedge} a \in X_{i}\right\}$.
- $t \in\left[H_{i}\right]^{1}: A_{t}=\left\{a \in \mathbb{N}: t^{\wedge}\langle a, \alpha\rangle \in{ }^{*} X_{i}\right\}$.
- Inductively, $\alpha \in{ }^{*} A_{t}$ for each $t \in\left[H_{i}\right]^{<3}$.
- $\alpha \in \bigcap_{t \in\left[H_{i}\right]<3}{ }^{*} A_{t}=*\left(\bigcap_{t \in\left[H_{i}\right]<3} A_{t}\right)$.
- So the intersection of all A_{t} is infinite.
- Pick $h_{i+1}>h_{i}$ from that intersection.

Ramsey's theorem

Theorem (Ramsey 1930)

Partition $[\mathbb{N}]^{k}$ into finitely many pieces X_{0}, \ldots, X_{n}. Then there is infinite $H \subseteq \mathbb{N}$ so that $[H]^{k} \subseteq X_{i}$ for some i.

Proof ($k=3$):

- Consider $\alpha \in{ }^{*} \mathbb{N} \backslash \mathbb{N}$.
- Then $\left\langle\alpha,{ }^{*} \alpha,{ }^{*(2)} \alpha\right\rangle$ is in some ${ }^{*(3)} X_{i}$.
- $A_{\emptyset}=\left\{a \in \mathbb{N}:\left\langle a, \alpha,{ }^{*} \alpha\right\rangle \in{ }^{*(2)} X_{i}\right\}$.
- ${ }^{*} A_{\emptyset}=\left\{a \in{ }^{*} \mathbb{N}:\left\langle a,{ }^{*} \alpha,{ }^{*(2)} \alpha\right\rangle \in{ }^{*(3)} X_{i}\right\}$.
- $\alpha \in{ }^{*} A_{\emptyset}$, so A_{\emptyset} is infinite
- h_{0} is the minimum member of A_{\emptyset}.

Do an induction:

- Already built $H_{i}=\left\langle h_{0}, \ldots, h_{i}\right\rangle$.
- $t \in\left[H_{i}\right]^{2}: A_{t}=\left\{a \in \mathbb{N}: t^{\wedge} a \in X_{i}\right\}$.
- $t \in\left[H_{i}\right]^{1}: A_{t}=\left\{a \in \mathbb{N}: t^{\wedge}\langle a, \alpha\rangle \in{ }^{*} X_{i}\right\}$.
- Inductively, $\alpha \in{ }^{*} A_{t}$ for each $t \in\left[H_{i}\right]^{<3}$.
- $\alpha \in \bigcap_{t \in\left[H_{i}\right]<3}{ }^{*} A_{t}=*\left(\bigcap_{t \in\left[H_{i}\right]<3} A_{t}\right)$.
- So the intersection of all A_{t} is infinite.
- Pick $h_{i+1}>h_{i}$ from that intersection.

Finally $H=\left\langle h_{i}\right\rangle$ is monochromatic.

Compare to standard proofs of Ramsey's theorem

- Also goes by induction. At stage i, have built up H_{i} an initial segment of the monochromatic H.
- For $t \in\left[H_{i}\right]^{<3}$, have A_{t} is the set of ways you can extend t to get a tuple of the correct color.

Compare to standard proofs of Ramsey's theorem

- Also goes by induction. At stage i, have built up H_{i} an initial segment of the monochromatic H.
- For $t \in\left[H_{i}\right]^{<3}$, have A_{t} is the set of ways you can extend t to get a tuple of the correct color.
- Hard part: Showing you always have room to expand, viz. that the intersection of the A_{t} is infinite, in such a way that you don't muck this up for future steps.
- Need to do some bookkeeping to ensure you can arrange this.

Compare to standard proofs of Ramsey's theorem

- Also goes by induction. At stage i, have built up H_{i} an initial segment of the monochromatic H.
- For $t \in\left[H_{i}\right]^{<3}$, have A_{t} is the set of ways you can extend t to get a tuple of the correct color.
- Hard part: Showing you always have room to expand, viz. that the intersection of the A_{t} is infinite, in such a way that you don't muck this up for future steps.
- Need to do some bookkeeping to ensure you can arrange this.
- The hyperobjects α and $\left\langle\alpha,{ }^{*} \alpha,{ }^{*(2)} \alpha\right\rangle$ do this bookkeeping for us.

Compare to standard proofs of Ramsey's theorem

- Also goes by induction. At stage i, have built up H_{i} an initial segment of the monochromatic H.
- For $t \in\left[H_{i}\right]^{<3}$, have A_{t} is the set of ways you can extend t to get a tuple of the correct color.
- Hard part: Showing you always have room to expand, viz. that the intersection of the A_{t} is infinite, in such a way that you don't muck this up for future steps.
- Need to do some bookkeeping to ensure you can arrange this.
- The hyperobjects α and $\left\langle\alpha,{ }^{*} \alpha,{ }^{*(2)} \alpha\right\rangle$ do this bookkeeping for us.
"I do not think that a scientific result which gives us a better understanding of the world and makes it more harmonious in our eyes should be held in lower esteem than an invention which improves household plumbing." -Alfred Tarski (paraphrased)

Generalizing Ramsey to families of sets of nonuniform size

Definition

The Schreier barrier \mathcal{S} consists of all $s \in[\mathbb{N}]^{<\omega}$ so that $|s|=\min s+1$.

- The first element of s tells you how long s is.
- You can think of \mathcal{S} as a tagged amalgamation of (copies of) all $[\mathbb{N}]^{k}$.

A Ramsey property for the Schreier barrier

Theorem (Nash-Williams for \mathcal{S})
Partition \mathcal{S} into finitely many pieces. Then there is infinite $H \subseteq \mathbb{N}$ so that $\mathcal{S} \upharpoonright H$ is monochromatic.
$\mathcal{S} \upharpoonright H=\{s \in \mathcal{S}: s \subseteq H\}$
$\mathcal{S}=\left\{s \in[\mathbb{N}]^{<\omega}:|s|=\min s+1\right\}$

A Ramsey property for the Schreier barrier

Theorem (Nash-Williams for \mathcal{S})

Partition \mathcal{S} into finitely many pieces. Then there is infinite $H \subseteq \mathbb{N}$ so that $\mathcal{S} \upharpoonright H$ is monochromatic.
$\mathcal{S} \upharpoonright H=\{s \in \mathcal{S}: s \subseteq H\}$
$\mathcal{S}=\left\{s \in[\mathbb{N}]^{<\omega}:|s|=\min s+1\right\}$

- For $[\mathbb{N}]^{k}$ we looked at what piece of the partition contained $\left\langle\alpha,{ }^{*} \alpha, \ldots,{ }^{*(k-1)} \alpha\right\rangle$
- But now we don't know in advance how long a sequence in \mathcal{S} will be
- Intuitively, we want to look at

$$
\left\langle\alpha,{ }^{*} \alpha, \ldots{ }^{*(\alpha)} \alpha\right\rangle
$$

- But this is nonsensical-what would it even mean to iterate * a hyperfinite number of times?

A proxy for $\left\langle\alpha,{ }^{*} \alpha, \ldots{ }^{*(\alpha)} \alpha\right\rangle$

Fact: Fix $\alpha \in{ }^{*} \mathbb{N}$. There is (a non-unique) $\sigma(\alpha)$ so that for any set X

$$
\sigma(\alpha) \in^{*} X \quad \Leftrightarrow \quad \alpha \in^{*}\left\{k \in \mathbb{N}:\left\langle\alpha, \ldots,{ }^{*(k-1)} \alpha\right\rangle \in^{*(k)} X\right\} .
$$

This $\sigma(\alpha)$ is a proxy for $\left\langle\alpha,{ }^{*} \alpha, \ldots,{ }^{*(\alpha)} \alpha\right\rangle$.

A proxy for $\left\langle\alpha,{ }^{*} \alpha, \ldots{ }^{*(\alpha)} \alpha\right\rangle$
Fact: Fix $\alpha \in{ }^{*} \mathbb{N}$. There is (a non-unique) $\sigma(\alpha)$ so that for any set X

$$
\sigma(\alpha) \in^{*} X \quad \Leftrightarrow \quad \alpha \in{ }^{*}\left\{k \in \mathbb{N}:\left\langle\alpha, \ldots,{ }^{*(k-1)} \alpha\right\rangle \in{ }^{*(k)} X\right\} .
$$

This $\sigma(\alpha)$ is a proxy for $\left\langle\alpha,{ }^{*} \alpha, \ldots,{ }^{*(\alpha)} \alpha\right\rangle$.

- Just like $\left\langle\alpha,{ }^{*} \alpha,{ }^{*(2)} \alpha\right\rangle$ was used to guide our choices to construct a monochromatic set for $[\mathbb{N}]^{3}$,
- Use $\sigma(\alpha)$ to guide the choices to build a monochromatic set for the Schreier barrier.

Further generalization: fronts

$\mathcal{F} \subseteq[\mathbb{N}]^{<\omega}$ is a front if

- (antichain or Nash-Williams property)
distinct elements of \mathcal{F} cannot be initial
segments of each other
- (density)
any infinite $b \subseteq \mathbb{N}$ has an initial segment in \mathcal{F}

Further generalization: fronts

$\mathcal{F} \subseteq[\mathbb{N}]^{<\omega}$ is a front if

- (antichain or Nash-Williams property) distinct elements of \mathcal{F} cannot be initial segments of each other
- (density)
any infinite $b \subseteq \mathbb{N}$ has an initial segment in \mathcal{F}

Examples:

- $[\mathbb{N}]^{k}$ for any k
- The Schreier barrier \mathcal{S}

Further generalization: fronts

$\mathcal{F} \subseteq[\mathbb{N}]^{<\omega}$ is a front if

- (antichain or Nash-Williams property) distinct elements of \mathcal{F} cannot be initial segments of each other
- (density)
any infinite $b \subseteq \mathbb{N}$ has an initial segment in \mathcal{F}

Examples:

- $[\mathbb{N}]^{k}$ for any k
- The Schreier barrier \mathcal{S}

To prove a Ramsey property for $[\mathbb{N}]^{k}$ and \mathcal{S} we had an idea of what a generic nonstandard member looked like, based on how the front was built up.

- $\left\langle\alpha, \ldots,{ }^{*(k-1)} \alpha\right\rangle$ for $[\mathbb{N}]^{k}$
- $\sigma(\alpha)$, a proxy for $\left\langle\alpha, \ldots,{ }^{*(\alpha)} \alpha\right\rangle$ for \mathcal{S}

If we want to do the same for an arbitrary front \mathcal{F} we need to understand how \mathcal{F} is built up.

The Nash-Williams theorem for Ellentuck space

Theorem (Nash-Williams theorem)
Let \mathcal{F} be a front. Partition \mathcal{F} into finitely many pieces. Then there is infinite $H \subseteq \mathbb{N}$ so that $\mathcal{F} \upharpoonright H$ is monochromatic.
$\mathcal{F} \upharpoonright H=\{s \in \mathcal{F}: s \subseteq H\}$

The Nash-Williams theorem for Ellentuck space

Theorem (Nash-Williams theorem)

Let \mathcal{F} be a front. Partition \mathcal{F} into finitely many pieces. Then there is infinite $H \subseteq \mathbb{N}$ so that $\mathcal{F} \upharpoonright H$ is monochromatic.
$\mathcal{F} \mid H=\{s \in \mathcal{F}: s \subseteq H\}$

- Fronts can be understood as inductively built up from simpler fronts.
- Inductively along the tree of subfronts of \mathcal{F} you can build up a hyperobject $\sigma_{\mathcal{F}}(\alpha)$.
- Use $\sigma_{\mathcal{F}}(\alpha)$ to guide the choices to build a monochromatic set for \mathcal{F}.
The Point: Do the same proof as for Ramsey's theorem, but with a fancier object to guide the induction.

The topological in topological Ramsey theory

It was realized that a lot of combinatorial theorems about \mathbb{N} could be understood as expressing different facets of a certain topological space.
Ellentuck space \mathcal{E} has multiple components.

- The points are infinite subsets of \mathbb{N}.
- You can associate to each point its k-th finite approximation in $[\mathbb{N}]^{k}$.
- There is a partial order \subseteq on points.

The Ellentuck topology on \mathcal{E} is generated by basic open sets

$$
[t, X]=\{Y \in \mathcal{E}: Y \subseteq X \text { and } t \sqsubseteq Y\}
$$

The topological in topological Ramsey theory

It was realized that a lot of combinatorial theorems about \mathbb{N} could be understood as expressing different facets of a certain topological space.

Ellentuck space \mathcal{E} has multiple components.

- The points are infinite subsets of \mathbb{N}.
- You can associate to each point its k-th finite approximation in $[\mathbb{N}]^{k}$.
- There is a partial order \subseteq on points.

The Ellentuck topology on \mathcal{E} is generated by basic open sets

$$
[t, X]=\{Y \in \mathcal{E}: Y \subseteq X \text { and } t \sqsubseteq Y\}
$$

Get a connection between topology and combinatorics:

- $\mathcal{X} \subseteq \mathcal{E}$ is Ramsey if you can refine any basic open set be either contained in or disjoint from \mathcal{X}.
- $\mathcal{X} \subseteq \mathcal{E}$ is Ramsey null if it is Ramsey and you can always refine to be disjoint from \mathcal{X}.
- Fact: Any Baire subset of \mathcal{E} is Ramsey and any meager subset is Ramsey null.
- Indeed any Souslin-measurable or Borel subset is Ramsey.

Abstract Ramsey spaces

Ellentuck space \mathcal{E} has some nice properties.
(A.1) Sequencing: points behave like infinite sequences.
(A.2) Finitization: you can port the partial order \subseteq to the finite approximations, and each approximation has a finite number of predecessors.
(A.3) Amalgamation: [this one's more technical].
(A.4) Pigeonhole: as it says in the name.

A Ramsey space is a tuple $(\mathcal{R}, \mathcal{A} \mathcal{R}, \leq, r)$ satisfying (A.1-4) where \mathcal{R} are the points, $r: \mathcal{R} \times \mathbb{N} \rightarrow \mathcal{A R}$ is the finite approximation map, and \leq is the partial order.

Abstract Ramsey spaces

Ellentuck space \mathcal{E} has some nice properties.
(A.1) Sequencing: points behave like infinite sequences.
(A.2) Finitization: you can port the partial order \subseteq to the finite approximations, and each approximation has a finite number of predecessors.
(A.3) Amalgamation: [this one's more technical].
(A.4) Pigeonhole: as it says in the name.

A Ramsey space is a tuple $(\mathcal{R}, \mathcal{A} \mathcal{R}, \leq, r)$ satisfying (A.1-4) where \mathcal{R} are the points, $r: \mathcal{R} \times \mathbb{N} \rightarrow \mathcal{A R}$ is the finite approximation map, and \leq is the partial order.

- You can put an Ellentuck topology on \mathcal{R}, and get a topology \Leftrightarrow combinatorics connection.

The abstract Nash-Williams theorem

Theorem (Abstract Nash-Williams)
 Suppose \mathcal{R} is closed (in the product topology on $\mathcal{A R}$). Then any front on the finite approximations $\mathcal{A R}$ satisfies a Ramsey partition property.

The abstract Nash-Williams theorem

Theorem (Abstract Nash-Williams)
 Suppose \mathcal{R} is closed (in the product topology on $\mathcal{A R}$). Then any front on the finite approximations $\mathcal{A R}$ satisfies a Ramsey partition property.

- I'd like to say our nonstandard proof of the Nash-Williams theorem extends directly to the full abstract Nash-Williams theorem.
- But

The abstract Nash-Williams theorem

Theorem (Abstract Nash-Williams)

Suppose \mathcal{R} is closed (in the product topology on $\mathcal{A R}$). Then any front on the finite approximations $\mathcal{A R}$ satisfies a Ramsey partition property.

- I'd like to say our nonstandard proof of the Nash-Williams theorem extends directly to the full abstract Nash-Williams theorem.
- But we need the space to be amenable to nonstandard methods.
- And we don't (yet?) have a proof that this applies to every nontrivial Ramsey space.

What we do have for the abstract Nash-Williams theorem

Under an extra assumption the nonstandard proof goes through.

Theorem (Partial abstract Nash-Williams)

Consider a front \mathcal{F} on $\mathcal{A R}$. Suppose

- $\mathcal{A R}$ is infinitely branching everywhere; and
- There is a filter \mathcal{C} on \mathcal{R} so that for each $s \in T(\mathcal{F}) \backslash \mathcal{F}$ the restriction of succ s to \mathcal{C} is a nonprincipal ultrafilter on succ s.
Then \mathcal{F} satisfies a Ramsey partition property.
- ($\mathcal{R}, \leq)$ is a poset, so the usual definition of filter applies to \mathcal{C}
- succ $s \upharpoonright X=\left\{t \in \operatorname{succ} s: \exists k t \leq_{\text {fin }} r_{k}(X)\right\}$
- $\operatorname{succ} s \upharpoonright \mathcal{C}=\{\operatorname{succ} s \upharpoonright X: X \in \mathcal{C}\}$

Positive examples

Any Ramsey space which can be thought of as its $(k+1)$-th approximations coming from k-th approximations by concatenating sequences from (cofinite subsets of) a countable alphabet will satisfy the extra assumption we need.

- Ellentuck space
- The Milliken space of block sequences
- The Hales-Jewett space of variable words
- The space $\mathcal{E}_{\omega}(\mathbb{N})$ of equivalence relations on \mathbb{N} with infinite quotients

Positive examples

Any Ramsey space which can be thought of as its $(k+1)$-th approximations coming from k-th approximations by concatenating sequences from (cofinite subsets of) a countable alphabet will satisfy the extra assumption we need.

- Ellentuck space
- The Milliken space of block sequences
- The Hales-Jewett space of variable words
- The space $\mathcal{E}_{\omega}(\mathbb{N})$ of equivalence relations on \mathbb{N} with infinite quotients What else?

Continuing work

- The abstract Nash-Williams theorem isn't the only theorem in abstract Ramsey theory.
- What other results are amenable to nonstandard methods?

Thank you!

