Interpretations and bi-interpretations in second-order arithmetic

Kameryn J. Williams
they/them
Bard College at Simon's Rock
Online Logic Seminar 2023 Oct 5

Joint work with Alfredo Roque Freire

PA has some nice properties

As befitting an important foundational theory, PA enjoys some nice properties.

PA has some nice properties

As befitting an important foundational theory, PA enjoys some nice properties.

- PA isn't finitely axiomatizable;
- For each formula $\varphi(x)$, PA proves $\varphi(x)$ admits a definable Skolem function;
- (Mostowski) For each finite $T \subseteq$ PA, PA proves Con (T);

PA has some nice properties

As befitting an important foundational theory, PA enjoys some nice properties.

- PA isn't finitely axiomatizable;
- For each formula $\varphi(x)$, PA proves $\varphi(x)$ admits a definable Skolem function;
- (Mostowski) For each finite $T \subseteq$ PA, PA proves Con (T);
- (Visser) If T_{0}, T_{1} are extensions of PA, then T_{0} and T_{1} are bi-interpretable iff they have the same deductive closure.

Interpretations

\mathcal{M} and \mathcal{N} are structures, possibly with different signatures.

- An interpretation of \mathcal{N} in \mathcal{M} is a definable copy of \mathcal{N} in \mathcal{M}.
- Definable $N^{\mathcal{I}} \subseteq M^{k}$ is the domain;
- For each function f of \mathcal{N} the corresponding function $f^{\mathcal{I}}$ over $N^{\mathcal{I}}$ is definable.

Interpretations

\mathcal{M} and \mathcal{N} are structures, possibly with different signatures.

- An interpretation of \mathcal{N} in \mathcal{M} is a definable copy of \mathcal{N} in \mathcal{M}.
- Definable $N^{\mathcal{I}} \subseteq M^{k}$ is the domain;
- For each function f of \mathcal{N} the corresponding function $f^{\mathcal{I}}$ over $N^{\mathcal{I}}$ is definable.
- Example: The complex field \mathbb{C} is interpreted in the real field \mathbb{R} via the usual ordered pair idea.

Interpretations

\mathcal{M} and \mathcal{N} are structures, possibly with different signatures.

- An interpretation of \mathcal{N} in \mathcal{M} is a definable copy of \mathcal{N} in \mathcal{M}.
- Definable $N^{\mathcal{I}} \subseteq M^{k}$ is the domain;
- For each function f of \mathcal{N} the corresponding function $f^{\mathcal{I}}$ over $N^{\mathcal{I}}$ is definable.
- You can also work on the level of theories: An interpretation of S in T is a collection of definitions in the language of T giving uniform interpretations of models of S in models of T.
- Example: The complex field \mathbb{C} is interpreted in the real field \mathbb{R} via the usual ordered pair idea.

Interpretations

\mathcal{M} and \mathcal{N} are structures, possibly with different signatures.

- An interpretation of \mathcal{N} in \mathcal{M} is a definable copy of \mathcal{N} in \mathcal{M}.
- Definable $N^{\mathcal{I}} \subseteq M^{k}$ is the domain;
- For each function f of \mathcal{N} the corresponding function $f^{\mathcal{I}}$ over $N^{\mathcal{I}}$ is definable.
- You can also work on the level of theories: An interpretation of S in T is a collection of definitions in the language of T giving uniform interpretations of models of S in models of T.
- Example: The complex field \mathbb{C} is interpreted in the real field \mathbb{R} via the usual ordered pair idea.
- Example: ZFC can be interpreted in ZF via the constructible universe.

Interpretations

\mathcal{M} and \mathcal{N} are structures, possibly with different signatures.

- An interpretation of \mathcal{N} in \mathcal{M} is a definable copy of \mathcal{N} in \mathcal{M}.
- Definable $N^{\mathcal{I}} \subseteq M^{k}$ is the domain;
- For each function f of \mathcal{N} the corresponding function $f^{\mathcal{I}}$ over $N^{\mathcal{I}}$ is definable.
- You can also work on the level of theories: An interpretation of S in T is a collection of definitions in the language of T giving uniform interpretations of models of S in models of T.
- Example: The complex field \mathbb{C} is interpreted in the real field \mathbb{R} via the usual ordered pair idea.
- Example: ZFC can be interpreted in ZF via the constructible universe.
- Example There are other ways to interpret, e.g. via the class of hereditarily definable sets.

Bi-interpretations

When are two theories equivalent?

Bi-interpretations

When are two theories equivalent?

- Mutual interpretability is insufficient.
- Analogy to another category: For topological spaces, it could be X embeds as a subspace of Y which embeds as a subspace of X, but X and Y are not homeomorphic: e.g. open vs closed intervals.

Bi-interpretations

When are two theories equivalent?

- Mutual interpretability is insufficient.
- Analogy to another category: For topological spaces, it could be X embeds as a subspace of Y which embeds as a subspace of X, but X and Y are not homeomorphic: e.g. open vs closed intervals.
- Theories T and S are bi-interpretable if there are interpretations each way so that doing one interpretation then the other gives a definable isomorphism.

Think: Bi-interpretable theories have the same content.

Bi-interpretations

When are two theories equivalent?

- Mutual interpretability is insufficient.
- Analogy to another category: For topological spaces, it could be X embeds as a subspace of Y which embeds as a subspace of X, but X and Y are not homeomorphic: e.g. open vs closed intervals.
- Theories T and S are bi-interpretable if there are interpretations each way so that doing one interpretation then the other gives a definable isomorphism.
Example: PA and finite set theory are bi-interpretable, via a formalization of the bi-interpretation of ω and V_{ω}.
(You need to be careful about how you axiomatize finite set theory. The right
choice for the Foundation axiom makes this work out.)

Think: Bi-interpretable theories have the same content.

Bi-interpretations

When are two theories equivalent?

- Mutual interpretability is insufficient.
- Analogy to another category: For topological spaces, it could be X embeds as a subspace of Y which embeds as a subspace of X, but X and Y are not homeomorphic: e.g. open vs closed intervals.
- We'll see soon that mutual interpretability does not imply bi-interpretability.
- Theories T and S are bi-interpretable if there are interpretations each way so that doing one interpretation then the other gives a definable isomorphism.
Example: PA and finite set theory are bi-interpretable, via a formalization of the bi-interpretation of ω and V_{ω}.
(You need to be careful about how you axiomatize finite set theory. The right
choice for the Foundation axiom makes this work out.)

Think: Bi-interpretable theories have the same content.

Contrast to conservativity

Another notion of two theories having the same content is conservativity.

- Let S be interpreted in T, say by a reduct.
- T is conservative over S if the only S-sentences which T proves holds in its interpreted copy of S are those provable from S.

Contrast to conservativity

Another notion of two theories having the same content is conservativity.

- Let S be interpreted in T, say by a reduct.
- T is conservative over S if the only S-sentences which T proves holds in its interpreted copy of S are those provable from S.
Example: ACA_{0} (second-order arithmetic with the arithmetical comprehension axiom) is conservative over PA.
Non-example: ZFC is not conservative over PA, since ZFC proves Con(PA).

Contrast to conservativity

Another notion of two theories having the same content is conservativity.

- Let S be interpreted in T, say by a reduct.
- T is conservative over S if the only S-sentences which T proves holds in its interpreted copy of S are those provable from S.
Example: ACA_{0} (second-order arithmetic with the arithmetical comprehension axiom) is conservative over PA.
Non-example: ZFC is not conservative over PA, since ZFC proves Con(PA).
But bi-interpretability is stronger than conservativity:
- Example: ACA_{0} is not bi-interpretable with PA. (Because ACA_{0} is finitely axiomatizable but PA is not.)

Lesson: ACA_{0} and PA have the same arithmetical content, but $A C A_{0}$ has extra content beyond that.
(A fun exercise for the bored listener: come up with an explicit example of this extra content.)

Back to Visser's theorem

Definition: A theory T is tight if any two extensions in the same language are bi-interpretable if and only if they are deductively equivalent.

- Intuitively, this represents a sort of semantic completeness of T.
(Without the same language restriction this is trivial: e.g. PA + "the new unary predicate is the evens" versus PA + "the new unary predicate is the odds".)
(This is only interesting if T is not complete; if T is deductively complete then it is trivially tight.)

Back to Visser's theorem

Definition: A theory T is tight if any two extensions in the same language are bi-interpretable if and only if they are deductively equivalent.

- Intuitively, this represents a sort of semantic completeness of T.

Examples:

- (Visser) PA
- (Enayat) ZF
- (Enayat) Z_{2}
- (Enayat) KM

$$
\text { (Without the same language restriction this is trivial: e.g. PA }+ \text { "the new unary }
$$ predicate is the evens" versus PA + "the new unary predicate is the odds".)

(This is only interesting if T is not complete; if T is deductively complete then it is trivially tight.)

- Z_{2} is second-order arithmetic with full comprehension
- KM is Kelley-Morse class theory with full comprehension

Tightness gives separations of mutual interpretability and bi-interpretability

ZF is tight.

- So ZFC +CH and ZFC $+\neg \mathrm{CH}$ are not bi-interpretable.

Tightness gives separations of mutual interpretability and bi-interpretability

ZF is tight.

- So ZFC +CH and ZFC $+\neg \mathrm{CH}$ are not bi-interpretable.
- But they are mutually interpretable:
- Interpret $\mathrm{ZFC}+\mathrm{CH}$ in $\mathrm{ZFC}+\neg \mathrm{CH}$ via the constructible universe.
- Interpret $\mathrm{ZFC}+\neg \mathrm{CH}$ in $\mathrm{ZFC}+\mathrm{CH}$ via the boolean ultrapower approach to forcing.

Tightness gives separations of mutual interpretability and bi-interpretability

ZF is tight.

- So ZFC +CH and ZFC $+\neg \mathrm{CH}$ are not bi-interpretable.
- But they are mutually interpretable:
- Interpret $\mathrm{ZFC}+\mathrm{CH}$ in $\mathrm{ZFC}+\neg \mathrm{CH}$ via the constructible universe.
- Interpret $\mathrm{ZFC}+\neg \mathrm{CH}$ in $\mathrm{ZFC}+\mathrm{CH}$ via the boolean ultrapower approach to forcing.
- These interpretations lose information.
- Dropping down to the constructible universe kills large cardinals, and you can't get them back by forcing.
- Boolean ultrapowers give you a genuine interpretation, without needing a generic filter from outside the universe, but they destroy well-foundedness.

Enayat's theorem implies there are no interpretations you could choose to avoid this information loss.

Our main question

- Enayat extended Visser's ideas to apply to other important foundational theories.
- But the proofs use the full strength of these theories.
- These theories have natural hierarchies of increasingly stronger fragments.

$$
\begin{gathered}
\mathrm{I} \Sigma_{0} \subseteq \mathrm{I} \Sigma_{1} \subseteq \cdots \subseteq \mathrm{I} \Sigma_{k} \subseteq \cdots \subseteq \mathrm{PA} \\
\mathrm{ACA}_{0} \subseteq \Pi_{1}^{1}-\mathrm{CA}_{0} \subseteq \cdots \subseteq \Pi_{k}^{1}-\mathrm{CA} \subseteq \cdots \subseteq \mathrm{Z}_{2} \subseteq
\end{gathered}
$$

- Do we need the full strength of the theory to get tightness? Or are these fragments also tight?

Our main question

- Enayat extended Visser's ideas to apply to other important foundational theories.
- But the proofs use the full strength of these theories.
- These theories have natural hierarchies of increasingly stronger fragments.

$$
\begin{gathered}
\mathrm{I} \Sigma_{0} \subseteq \mathrm{I} \Sigma_{1} \subseteq \cdots \subseteq \mathrm{I} \Sigma_{k} \subseteq \cdots \subseteq \mathrm{PA} \\
\mathrm{ACA}_{0} \subseteq \Pi_{1}^{1}-\mathrm{CA}_{0} \subseteq \cdots \subseteq \Pi_{k}^{1}-\mathrm{CA} \subseteq \subseteq \subseteq \mathrm{Z}_{2} \subseteq
\end{gathered}
$$

- Do we need the full strength of the theory to get tightness? Or are these fragments also tight?
Signs point to yes: Freire and I looked at fragments of Z_{2} and KM . Independently, Enayat has a different argument that overlaps with some of the cases we get.

Outline of the rest of the talk

- I'll give a special case of ACA being non-tight in some detail.
- I'll sketch how to get a uniform version of the bi-interpretation, to get ACA isn't tight.
- I'll then gesture toward how you can use the same core idea to show that the Π_{k}^{1}-CA are also non-tight.

The special case

I will demonstrate two models of ACA which satisfy different theories but are bi-interpretable.
Specifically, the minimum ω-model of ACA is bi-interpretable with a carefully chosen extension by Cohen forcing, and these models are distinguishable by their theories.

The minimum ω-model of ACA

- A model of second-order arithmetic is of the form (M, \mathcal{X}) where M are the numbers of the model and $\mathcal{X} \subseteq \mathcal{P}(M)$ are the sets.
- If $M \cong \omega$ then we call it an ω-model.

The minimum ω-model of ACA

- A model of second-order arithmetic is of the form (M, \mathcal{X}) where M are the numbers of the model and $\mathcal{X} \subseteq \mathcal{P}(M)$ are the sets.
- If $M \cong \omega$ then we call it an ω-model.
- ω-models satisfy full induction.
- Any ω-model of $A^{\prime} A_{0}$ is a model of ACA.
- ACA is axiomatized by:
- the axioms of discretely ordered semirings;
- induction in the full language; and
- arithmetical comprehension.
- Compare: ACA_{0} only has induction for arithmetical formulae.

The minimum ω-model of ACA

- A model of second-order arithmetic is of the form (M, \mathcal{X}) where M are the numbers of the model and $\mathcal{X} \subseteq \mathcal{P}(M)$ are the sets.
- If $M \cong \omega$ then we call it an ω-model.
- ω-models satisfy full induction.
- Any ω-model of $A C A_{0}$ is a model of ACA.
- It's easy to see that the minimum ω-model of ACA is
- ACA is axiomatized by:
- the axioms of discretely ordered semirings;
- induction in the full language; and
- arithmetical comprehension.
- Compare: ACA_{0} only has induction for arithmetical formulae.

The minimum ω-model of ACA

- A model of second-order arithmetic is of the form (M, \mathcal{X}) where M are the numbers of the model and $\mathcal{X} \subseteq \mathcal{P}(M)$ are the sets.
- If $M \cong \omega$ then we call it an ω-model.
- ω-models satisfy full induction.
- Any ω-model of $A C A_{0}$ is a model of ACA.
- It's easy to see that the minimum ω-model of ACA is (ω, \mathcal{D}), the finite ordinals equipped with their arithmetically definable subsets.
- ACA is axiomatized by:
- the axioms of discretely ordered semirings;
- induction in the full language; and
- arithmetical comprehension.
- Compare: ACA_{0} only has induction for arithmetical formulae.

Tarski said truth isn't definable, but Mostowski said it is

Let T denote the Tarskian satisfaction class for
ω.
Theorem (Tarski): $\mathrm{T} \notin \mathcal{D}$.

Tarski said truth isn't definable, but Mostowski said it is

Let T denote the Tarskian satisfaction class for
ω.
Theorem (Tarski): $\mathrm{T} \notin \mathcal{D}$.
Theorem (Mostowski): But T is definable over (ω, \mathcal{D}).

Tarski said truth isn't definable, but Mostowski said it is

Let T denote the Tarskian satisfaction class for
ω.
Theorem (Tarski): $\mathrm{T} \notin \mathcal{D}$.
Theorem (Mostowski): But T is definable over (ω, \mathcal{D}).
Proof:

- For each $k \in \omega$, the restriction T_{k} of T to Σ_{k} formulae is in \mathcal{D}.
- So we can define that $\varphi[a]$ is in T iff there exists k so that there exists a set satisfying the definition of T_{k} which judges $\varphi[a]$ to be true.
- (The T_{k} are not uniformly arithmetically definable, but the property of being a T_{k} is uniformly recognizable.)

Tarski said truth isn't definable, but Mostowski said it is

Let T denote the Tarskian satisfaction class for
ω.
Theorem (Tarski): $\mathrm{T} \notin \mathcal{D}$.
Theorem (Mostowski): But T is definable over (ω, \mathcal{D}).
Proof:

- For each $k \in \omega$, the restriction T_{k} of T to Σ_{k} formulae is in \mathcal{D}.
- So we can define that $\varphi[a]$ is in T iff there exists k so that there exists a set satisfying the definition of T_{k} which judges $\varphi[a]$ to be true.
- (The T_{k} are not uniformly arithmetically definable, but the property of being a T_{k} is uniformly recognizable.)
- This gives a Σ_{1}^{1} definition of T.
- There's also Π_{1}^{1} definition-any set that looks like a T_{k} which has $\varphi[a]$ in its domain judges $\varphi[a]$ to be true.

Tarski said truth isn't definable, but Mostowski said it is

Let T denote the Tarskian satisfaction class for
ω.
Theorem (Tarski): $\mathrm{T} \notin \mathcal{D}$.
Theorem (Mostowski): But T is definable over (ω, \mathcal{D}).
Proof:

- For each $k \in \omega$, the restriction T_{k} of T to Σ_{k} formulae is in \mathcal{D}.
- So we can define that $\varphi[a]$ is in T iff there exists k so that there exists a set satisfying the definition of T_{k} which judges $\varphi[a]$ to be true.
- This gives a Σ_{1}^{1} definition of T.
- There's also Π_{1}^{1} definition—any set that looks like a T_{k} which has $\varphi[a]$ in its domain judges $\varphi[a]$ to be true.
- Observe that both definitions can be carried out over any ω-model of ACA.
- Since this is Δ_{1}^{1} it is absolute. All ω-models of ACA define T the same.
- (The T_{k} are not uniformly arithmetically definable, but the property of being a T_{k} is uniformly recognizable.)

Identifying the minimum ω-model of ACA, and codes for higher order sets

Because T is definable, so is the property " $X \in \mathcal{D}$ ":

- $X \in \mathcal{D}$ iff there is $\varphi[a, x]$ so that $X=\{x: \varphi[a, x] \in \mathrm{T}\}$.
So "every set is arithmetically definable" is a single second-order assertion, and the only ω-model of ACA which satisfies it is the minimum ω-model.

Identifying the minimum ω-model of ACA, and codes for higher order sets

Because T is definable, so is the property " $X \in \mathcal{D}$ ":

- $X \in \mathcal{D}$ iff there is $\varphi[a, x]$ so that $X=\{x: \varphi[a, x] \in \mathrm{T}\}$.
So "every set is arithmetically definable" is a single second-order assertion, and the only ω-model of ACA which satisfies it is the minimum ω-model.
\mathcal{D} is a set of sets of integers, but it can be coded by a single set of integers. The elements of \mathcal{D} are the slices of T.

Because ω has a canonical well-order, we have a canonical enumeration of the element of \mathcal{D} : order them by the order of their smallest index in T .

Relativizing truth and definability

Consider $C \subseteq \omega$.

- $\mathrm{T}(C)$ is the truth predicate with C as a predicate;
- $\mathcal{D}(C)$ is the sets arithmetically definable from C.
The facts about T and \mathcal{D} generalize to give:
- If \mathcal{X} is an ω-model of ACA with $C \in \mathcal{X}$ then $T(C)$ is definable over \mathcal{X} and so is the predicate " $X \in \mathcal{D}(C)$ ".

Relativizing truth and definability

Consider $C \subseteq \omega$.

- $\mathrm{T}(C)$ is the truth predicate with C as a predicate;
- $\mathcal{D}(C)$ is the sets arithmetically definable from C.
The facts about T and \mathcal{D} generalize to give:
- If \mathcal{X} is an ω-model of ACA with $C \in \mathcal{X}$ then $\mathrm{T}(\mathrm{C})$ is definable over \mathcal{X} and so is the predicate " $X \in \mathcal{D}(C)$ ".

If $C \notin \mathcal{D}$, then $\mathrm{T}(C)$ in general needn't be definable over \mathcal{D}. Quick proof: there are continuum many different
C but only countably many definitions.)

Relativizing truth and definability

Consider $C \subseteq \omega$.

- $\mathrm{T}(\mathrm{C})$ is the truth predicate with C as a predicate;
- $\mathcal{D}(C)$ is the sets arithmetically definable from C.
The facts about T and \mathcal{D} generalize to give:
- If \mathcal{X} is an ω-model of ACA with $C \in \mathcal{X}$ then $T(C)$ is definable over \mathcal{X} and so is the predicate " $X \in \mathcal{D}(C)$ ".

If $C \notin \mathcal{D}$, then $T(C)$ in general needn't be definable over \mathcal{D}. (Quick proof: there are continuum many different
C but only countably many definitions.)
But if C is definable over \mathcal{D} and generic over \mathcal{D} for forcing then the truth lemma implies $T(C)$ is definable over \mathcal{D}.

- An arithmetical formula $\varphi(C)$ is true iff there is $p \in C$ such that $p \Vdash \varphi(\dot{C})$.
- So we can define $T(C)$ over \mathcal{D} as: $\varphi[x, C] \in \mathrm{T}(C)$ iff there is $p \in C$ which forces $\varphi(x, C)$.

Defining a Cohen generic

Recall:

- Cohen forcing $\mathbb{P}=\operatorname{Add}(\omega, 1)$ is the infinite binary tree.
- A filter $C \subseteq \mathbb{P}$ is generic over \mathcal{D} if it meets every dense subset of \mathbb{P} from \mathcal{D}.

Defining a Cohen generic

Recall:

- Cohen forcing $\mathbb{P}=\operatorname{Add}(\omega, 1)$ is the infinite binary tree.
- A filter $C \subseteq \mathbb{P}$ is generic over \mathcal{D} if it meets every dense subset of \mathbb{P} from \mathcal{D}.
From T we have a canonical enumeration of the ω many dense subsets. Now follow the usual proof of the Rasiowa-Sikorski lemma:
- Start with $p_{0}=\emptyset$;
- At stage $n+1$, extend p_{n} to the least condition in the n-th dense set which is below p_{n}, get p_{n+1}
- Then define $C=\left\{q: q \geq p_{n}\right.$ for some $\left.n\right\}$.

Defining a Cohen generic

Recall:

- Cohen forcing $\mathbb{P}=\operatorname{Add}(\omega, 1)$ is the infinite binary tree.
- A filter $C \subseteq \mathbb{P}$ is generic over \mathcal{D} if it meets every dense subset of \mathbb{P} from \mathcal{D}.
From T we have a canonical enumeration of the ω many dense subsets. Now follow the usual proof of the Rasiowa-Sikorski lemma:
- Start with $p_{0}=\emptyset$;
- At stage $n+1$, extend p_{n} to the least condition in the n-th dense set which is below p_{n}, get p_{n+1}
- Then define $C=\left\{q: q \geq p_{n}\right.$ for some $\left.n\right\}$.

Because we have a definable enumeration of the dense sets and we always pick the least condition, there is a uniform definition of the p_{n}. So C is definable. Note the definition quantifies over sets in \mathcal{D}.

Defining a Cohen generic

Recall:

- Cohen forcing $\mathbb{P}=\operatorname{Add}(\omega, 1)$ is the infinite binary tree.
- A filter $C \subseteq \mathbb{P}$ is generic over \mathcal{D} if it meets every dense subset of \mathbb{P} from \mathcal{D}.
From T we have a canonical enumeration of the ω many dense subsets. Now follow the usual proof of the Rasiowa-Sikorski lemma:
- Start with $p_{0}=\emptyset$;
- At stage $n+1$, extend p_{n} to the least condition in the n-th dense set which is below p_{n}, get p_{n+1}
- Then define $C=\left\{q: q \geq p_{n}\right.$ for some $\left.n\right\}$.

Because we have a definable enumeration of the dense sets and we always pick the least condition, there is a uniform definition of the p_{n}. So C is definable. Note the definition quantifies over sets in \mathcal{D}.
Because \mathcal{D} is uniformly definable over any ω-model of ACA, any ω-model of ACA defines C the same.

Putting it all together

Let $\mathcal{U}=\mathcal{D}(C)$.
Theorem (Freire-W., independently Enayat)
(ω, \mathcal{D}) and (ω, \mathcal{U}) are bi-interpretable but satisfy different extensions of ACA.

Putting it all together

Let $\mathcal{U}=\mathcal{D}(C)$.
Theorem (Freire-W., independently Enayat)
(ω, \mathcal{D}) and (ω, \mathcal{U}) are bi-interpretable but satisfy different extensions of ACA.

That $(\omega, \mathcal{U}) \models$ ACA is because forcing preserves arithmetical comprehension. And it satisfies "there is a set which is not arithmetically definable" whereas (ω, \mathcal{D}) satisfies "every set is arithmetically definable". Finally, use that $T(C)$ is definable over \mathcal{D} to build the two sides of the bi-interpretation.

From ω-models to non-tightness

To get a failure of tightness, we need a construction that works uniformly across any model (of an appropriate theory).

From ω-models to non-tightness

To get a failure of tightness, we need a construction that works uniformly across any model (of an appropriate theory).
Use exactly the same theories and do the same construction.

From ω-models to non-tightness

To get a failure of tightness, we need a construction that works uniformly across any model (of an appropriate theory).
Use exactly the same theories and do the same construction.

- If $(M, \mathcal{X}) \models \mathrm{ACA}$, then \mathcal{X} has a Σ_{k}-satisfaction class for every $k \in M$. (Because the set of such k is inductive.)

From ω-models to non-tightness

To get a failure of tightness, we need a construction that works uniformly across any model (of an appropriate theory).
Use exactly the same theories and do the same construction.

- If $(M, \mathcal{X}) \vDash A C A$, then \mathcal{X} has a Σ_{k}-satisfaction class for every $k \in M$. (Because the set of such k is inductive.)
- If M is countable and recursively saturated it admits continuum many different full satisfaction classes, so we cannot expect that all M-models of ACA will define T the same.
- But if two M-models have the same Σ_{k}-satisfaction classes, then they define T the same. For example, this happens if one is a forcing extension of the other.

From ω-models to non-tightness

To get a failure of tightness, we need a construction that works uniformly across any model (of an appropriate theory).
Use exactly the same theories and do the same construction.

- If $(M, \mathcal{X}) \vDash A C A$, then \mathcal{X} has a Σ_{k}-satisfaction class for every $k \in M$. (Because the set of such k is inductive.)
- If M is countable and recursively saturated it admits continuum many different full satisfaction classes, so we cannot expect that all M-models of ACA will define T the same.
- But if two M-models have the same Σ_{k}-satisfaction classes, then they define T the same. For example, this happens if one is a forcing extension of the other.

Observation: Any model of ACA has a minimum ω-submodel (= submodel that agrees on ω) of ACA.

Non-tightness of ACA

Do the same definitions and arguments, but more carefully to check everything can be formalized, and you're done.

Let $D=$ ACA + "every set is arithmetical" and $U=$ ACA + "the canonical Cohen generic C exists and every set is arithmetical in $C^{\prime \prime}$.

Theorem (Freire-W., independently Enayat)
The theories D and U are bi-interpretable. Consequently, ACA is not tight.
Consequently every subtheory of $A C A$, such as $A C A_{0}$ is also not tight.

From ACA to Π_{k}^{1}-CA

Abstractly, the strategy to prove the non-tightness of ACA was this:

- There is a minimum model of ACA.
- There is a second-order axiom to characterize this minimum model.
- We can define a canonical Cohen generic over this minimum model, and thereby get a definable choice for an extension of the minimum model.
- The minimum model and its canonical extension are bi-interpretable.
- The construction machinery for the bi-interpretation works even over ω-nonstandard models.

From ACA to Π_{k}^{1}-CA

Abstractly, the strategy to prove the non-tightness of ACA was this:

- There is a minimum model of ACA.
- There is a second-order axiom to characterize this minimum model.
- We can define a canonical Cohen generic over this minimum model, and thereby get a definable choice for an extension of the minimum model.
- The minimum model and its canonical extension are bi-interpretable.
- The construction machinery for the bi-interpretation works even over ω-nonstandard models.

To prove the non-tightness of Π_{k}^{1}-CA we follow the same strategy.
The main difficulty is, how do you definably characterize the minimum model of Π_{k}^{1}-CA? And how do you do it so that the same construction can be carried out with nonstandard models?

From ACA to Π_{k}^{1}-CA

Abstractly, the strategy to prove the non-tightness of ACA was this:

- There is a minimum model of ACA.
- There is a second-order axiom to characterize this minimum model.
- We can define a canonical Cohen generic over this minimum model, and thereby get a definable choice for an extension of the minimum model.
- The minimum model and its canonical extension are bi-interpretable.
- The construction machinery for the bi-interpretation works even over ω-nonstandard models.

To prove the non-tightness of Π_{k}^{1}-CA we follow the same strategy.
The main difficulty is, how do you definably characterize the minimum model of Π_{k}^{1}-CA? And how do you do it so that the same construction can be carried out with nonstandard models? I'll sketch the highlights.

Second-order arithmetic is set theory in disguise, and minimum models

Strong subsystems of Z_{2} are bi-interpretable with fragments of $\mathrm{ZFC}^{-}+$"every set is countable". (The minus in ZFC- means minus Powerset).

The set theory \rightarrow arithmetic direction is simple—restrict to subsets of ω.
The arithmetic \rightarrow set theory direction is based on the idea, going back to Aczel and Scott, of coding sets as trees and constructing an appropriate membership relation between trees. A key observation, due to Simpson, is that ATR R_{0} suffices to carry out this interpretation.

Second-order arithmetic is set theory in disguise, and minimum models

Strong subsystems of Z_{2} are bi-interpretable with fragments of $\mathrm{ZFC}^{-}+$"every set is countable". (The minus in ZFC- means minus Powerset).

- β-models of arithmetic are bi-interpretable with transitive models of set theory.
- An ω-model of arithmetic is a β-model if it is correct about which of its relations are well-founded.
- A model \mathcal{M} of set theory is transitive if its membership relation is the true \in and \mathcal{M} is closed under \in :

$$
x \in y \in M \text { implies } x \in M \text {. }
$$

Second-order arithmetic is set theory in disguise, and minimum models

Strong subsystems of Z_{2} are bi-interpretable with fragments of $\mathrm{ZFC}^{-}+$"every set is countable". (The minus in ZFC- means minus Powerset).

- β-models of arithmetic are bi-interpretable with transitive models of set theory.
- Levels of the constructible universe L give minimum transitive models of set theory, whence we get minimum β-models of arithmetic.

Important point! L has a definable global well-order, allowing us to make canonical choices.

Second-order arithmetic is set theory in disguise, and minimum models

Strong subsystems of Z_{2} are bi-interpretable with fragments of $\mathrm{ZFC}^{-}+$"every set is countable". (The minus in ZFC- means minus Powerset).

- β-models of arithmetic are bi-interpretable with transitive models of set theory.
- Levels of the constructible universe L give minimum transitive models of set theory, whence we get minimum β-models of arithmetic.
- We can definably characterize these minimum models.
- This works for ill-founded models, and is absolute to outer models (= models with the same ordinals).

Do the same argument

Once you know how to characterize minimum β-models you do the same construction.

- $\left(\omega, \mathcal{D}_{k}\right)=$ the minimum β-model of $\Pi_{k}^{1}-C A$.
- Over $\left(\omega, \mathcal{D}_{k}\right)$ define a canonical Cohen generic C.
- Then $\left(\omega, \mathcal{D}_{k}\right)$ and $\left(\omega, \mathcal{D}_{k}[C]\right)$ are bi-interpretable and satisfy different theories.
- You can do this construction uniformly.
Π_{k}^{1}-CA is axiomatized by
- ACA; and
- Comprehension for Π_{k}^{1}-formulae.

Compare to $\Pi_{k}^{1}-C A_{0}$ which doesn't have full induction.

Theorem (Freire-W.)

For each finite $k, \Pi_{k}^{1}-\mathrm{CA}$ is not tight.

Related results

Freire and I were originally interested in the case of class theory, and only realized our constructions could be ported to arithmetic after the fact.

```
Theorem (Freire-W.)
The theories GB and GB + 恼-CA are not tight.
```


Related results

Freire and I were originally interested in the case of class theory, and only realized our constructions could be ported to arithmetic after the fact.

```
Theorem (Freire-W.)
The theories GB and GB + 恼
```

Independently to us, Ali Enayat proved:

Theorem (Enayat)

No finitely axiomatized subtheory of $\mathrm{PA}, \mathrm{ZF}, \mathrm{Z}_{2}$, or KM is tight.

What remains to be done?

Conjecture (Enayat)

If T is a strict subtheory of Z_{2} (or PA or ...) then T is not tight.
We know this in the cases:

- (Enayat) T is finitely axiomatizable;
- (Freire-W.) T has any amount of the Induction schema but only a bounded fragment of the Comprehension schema.

What remains to be done?

Conjecture (Enayat)

If T is a strict subtheory of Z_{2} (or PA or ...) then T is not tight.
We know this in the cases:

- (Enayat) T is finitely axiomatizable;
- (Freire-W.) T has any amount of the Induction schema but only a bounded fragment of the Comprehension schema.
An interesting open case:
- $T \subseteq$ ZF has the full \in-Induction and Separation schemata but only a bounded fragment of Collection.

What remains to be done?

Conjecture (Enayat)

If T is a strict subtheory of Z_{2} (or PA or ...) then T is not tight.
We know this in the cases:

- (Enayat) T is finitely axiomatizable;
- (Freire-W.) T has any amount of the Induction schema but only a bounded fragment of the Comprehension schema.

An interesting open case:

- $T \subseteq$ ZF has the full \in-Induction and Separation schemata but only a bounded fragment of Collection.
Other uses of bi-interpretations with minimum models, e.g. in second-order arithmetic or higher recursion theory?

Thank you!

- Alfredo Roque Freire and Kameryn J. Williams, Non-tightness in class theory and second-order arithmetic.
To appear: The Journal of Symbolic Logic.
Pre-print: arXiv:2212.04445 [math.LO]

