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PA has some nice properties

As befitting an important foundational theory, PA enjoys some nice
properties.

PA isn’t finitely axiomatizable;

For each formula ϕ(x), PA proves ϕ(x) admits a definable Skolem
function;

(Mostowski) For each finite T ⊆ PA, PA proves Con(T );

(Visser) If T0,T1 are extensions of PA, then T0 and T1 are
bi-interpretable iff they have the same deductive closure.
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Interpretations

M and N are structures, possibly with
different signatures.

An interpretation of N in M is a
definable copy of N in M.

Definable NI ⊆ Mk is the domain;
For each function f of N the
corresponding function f I over NI is
definable.

You can also work on the level of theories:
An interpretation of S in T is a collection
of definitions in the language of T giving
uniform interpretations of models of S in
models of T .

Example: The complex field C is
interpreted in the real field R via the usual
ordered pair idea.

Example: ZFC can be interpreted in ZF
via the constructible universe.

Example There are other ways to
interpret, e.g. via the class of hereditarily
definable sets.
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Bi-interpretations

When are two theories equivalent?

Mutual interpretability is insufficient.

Analogy to another category: For
topological spaces, it could be X embeds
as a subspace of Y which embeds as a
subspace of X , but X and Y are not
homeomorphic: e.g. open vs closed
intervals.

We’ll see soon that mutual interpretability
does not imply bi-interpretability.

Theories T and S are bi-interpretable if
there are interpretations each way so that
doing one interpretation then the other
gives a definable isomorphism.

Example: PA and finite set theory are
bi-interpretable, via a formalization of the
bi-interpretation of ω and Vω.

(You need to be careful about how you axiomatize finite set theory. The right

choice for the Foundation axiom makes this work out.)

Think: Bi-interpretable theories have the same content.
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Contrast to conservativity

Another notion of two theories having the same content is conservativity.

Let S be interpreted in T , say by a reduct.

T is conservative over S if the only S-sentences which T proves holds
in its interpreted copy of S are those provable from S .

Example: ACA0 (second-order arithmetic with the arithmetical
comprehension axiom) is conservative over PA.
Non-example: ZFC is not conservative over PA, since ZFC proves
Con(PA).

But bi-interpretability is stronger than conservativity:

Example: ACA0 is not bi-interpretable with PA.
(Because ACA0 is finitely axiomatizable but PA is not.)

Lesson: ACA0 and PA have the same arithmetical content, but ACA0 has
extra content beyond that.
(A fun exercise for the bored listener: come up with an explicit example of this extra content.)
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Back to Visser’s theorem

Definition: A theory T is tight if any two
extensions in the same language are
bi-interpretable if and only if they are
deductively equivalent.

Intuitively, this represents a sort of
semantic completeness of T .

Examples:

(Visser) PA

(Enayat) ZF

(Enayat) Z2

(Enayat) KM

(Without the same language restriction this is trivial: e.g. PA + “the new unary

predicate is the evens” versus PA + “the new unary predicate is the odds”.)

(This is only interesting if T is not complete; if T is deductively complete then it

is trivially tight.)

Z2 is second-order arithmetic with full
comprehension

KM is Kelley–Morse class theory with full
comprehension
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Tightness gives separations of mutual interpretability and bi-interpretability

ZF is tight.

So ZFC + CH and ZFC + ¬CH are not bi-interpretable.

But they are mutually interpretable:

Interpret ZFC + CH in ZFC + ¬CH via the constructible universe.
Interpret ZFC + ¬CH in ZFC + CH via the boolean ultrapower approach
to forcing.

These interpretations lose information.

Dropping down to the constructible universe kills large cardinals, and
you can’t get them back by forcing.
Boolean ultrapowers give you a genuine interpretation, without needing
a generic filter from outside the universe, but they destroy
well-foundedness.

Enayat’s theorem implies there are no interpretations you could choose to
avoid this information loss.
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Our main question

Enayat extended Visser’s ideas to apply to other important
foundational theories.

But the proofs use the full strength of these theories.

These theories have natural hierarchies of increasingly stronger
fragments.

IΣ0 ⊆ IΣ1 ⊆ · · · ⊆ IΣk ⊆ · · · ⊆ PA

ACA0 ⊆ Π1
1-CA0 ⊆ · · · ⊆ Π1

k -CA0 ⊆ · · · ⊆ Z2

Do we need the full strength of the theory to get tightness? Or are
these fragments also tight?

Signs point to yes: Freire and I looked at fragments of Z2 and KM.
Independently, Enayat has a different argument that overlaps with some of
the cases we get.
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Outline of the rest of the talk

I’ll give a special case of ACA being non-tight in some detail.

I’ll sketch how to get a uniform version of the bi-interpretation, to get
ACA isn’t tight.

I’ll then gesture toward how you can use the same core idea to show
that the Π1

k -CA are also non-tight.
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The special case

I will demonstrate two models of ACA which satisfy different
theories but are bi-interpretable.

Specifically, the minimum ω-model of ACA is bi-interpretable with
a carefully chosen extension by Cohen forcing, and these models
are distinguishable by their theories.
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The minimum ω-model of ACA

A model of second-order arithmetic is of
the form (M,X ) where M are the
numbers of the model and X ⊆ P(M) are
the sets.

If M ∼= ω then we call it an ω-model.

ω-models satisfy full induction.

Any ω-model of ACA0 is a model of ACA.

It’s easy to see that the minimum
ω-model of ACA is (ω,D), the finite
ordinals equipped with their arithmetically
definable subsets.

ACA is axiomatized by:

the axioms of discretely ordered
semirings;
induction in the full language; and
arithmetical comprehension.

Compare: ACA0 only has induction for
arithmetical formulae.
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Tarski said truth isn’t definable, but Mostowski said it is

Let T denote the Tarskian satisfaction class for
ω.
Theorem (Tarski): T 6∈ D.

Theorem (Mostowski): But T is definable
over (ω,D).
Proof:

For each k ∈ ω, the restriction Tk of T to
Σk formulae is in D.

So we can define that ϕ[a] is in T iff there
exists k so that there exists a set
satisfying the definition of Tk which
judges ϕ[a] to be true.

(The Tk are not uniformly arithmetically definable, but the property of

being a Tk is uniformly recognizable.)

This gives a Σ1
1 definition of T.

There’s also Π1
1 definition—any set that

looks like a Tk which has ϕ[a] in its
domain judges ϕ[a] to be true.

Observe that both definitions can be
carried out over any ω-model of ACA.

Since this is ∆1
1 it is absolute. All

ω-models of ACA define T the same.
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Identifying the minimum ω-model of ACA, and codes for higher order sets

Because T is definable, so is the property
“X ∈ D”:

X ∈ D iff there is ϕ[a, x ] so that
X = {x : ϕ[a, x ] ∈ T}.

So “every set is arithmetically definable” is a
single second-order assertion, and the only
ω-model of ACA which satisfies it is the
minimum ω-model.

D is a set of sets of integers, but it can be
coded by a single set of integers. The elements
of D are the slices of T.

Because ω has a canonical well-order, we have
a canonical enumeration of the element of D:
order them by the order of their smallest index
in T.
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Relativizing truth and definability

Consider C ⊆ ω.

T(C ) is the truth predicate with C as a
predicate;

D(C ) is the sets arithmetically definable
from C .

The facts about T and D generalize to give:

If X is an ω-model of ACA with C ∈ X
then T(C ) is definable over X and so is
the predicate “X ∈ D(C )”.

If C 6∈ D, then T(C ) in general needn’t be
definable over D. (Quick proof: there are continuum many different

C but only countably many definitions.)

But if C is definable over D and generic over
D for forcing then the truth lemma implies
T(C ) is definable over D.

An arithmetical formula ϕ(C ) is true iff
there is p ∈ C such that p  ϕ(Ċ ).

So we can define T(C ) over D as:
ϕ[x ,C ] ∈ T(C ) iff there is p ∈ C which
forces ϕ(x , Ċ ).
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Defining a Cohen generic

Recall:

Cohen forcing P = Add(ω, 1) is the
infinite binary tree.

A filter C ⊆ P is generic over D if it
meets every dense subset of P from D.

From T we have a canonical enumeration of
the ω many dense subsets. Now follow the
usual proof of the Rasiowa–Sikorski lemma:

Start with p0 = ∅;
At stage n + 1, extend pn to the least
condition in the n-th dense set which is
below pn, get pn+1

Then define C = {q : q ≥ pn for some n}.

Because we have a definable enumeration of
the dense sets and we always pick the least
condition, there is a uniform definition of the
pn. So C is definable. Note the definition
quantifies over sets in D.

Because D is uniformly definable over any
ω-model of ACA, any ω-model of ACA defines
C the same.
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Putting it all together

Let U = D(C ).

Theorem (Freire-W., independently Enayat)

(ω,D) and (ω,U) are bi-interpretable but satisfy different extensions of
ACA.

That (ω,U) |= ACA is because forcing preserves arithmetical
comprehension. And it satisfies “there is a set which is not arithmetically
definable” whereas (ω,D) satisfies “every set is arithmetically definable”.

Finally, use that T(C ) is definable over D to build the two sides of the
bi-interpretation.
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From ω-models to non-tightness

To get a failure of tightness, we need a construction that works uniformly
across any model (of an appropriate theory).

Use exactly the same theories and do the same construction.

If (M,X ) |= ACA, then X has a Σk -satisfaction class for every k ∈ M.
(Because the set of such k is inductive.)

If M is countable and recursively saturated it admits continuum many
different full satisfaction classes, so we cannot expect that all
M-models of ACA will define T the same.

But if two M-models have the same Σk -satisfaction classes, then they
define T the same. For example, this happens if one is a forcing
extension of the other.

Observation: Any model of ACA has a minimum ω-submodel (=
submodel that agrees on ω) of ACA.
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Non-tightness of ACA

Do the same definitions and arguments, but more carefully to check
everything can be formalized, and you’re done.

Let D = ACA + “every set is arithmetical” and U = ACA + “the canonical
Cohen generic C exists and every set is arithmetical in C”.

Theorem (Freire-W., independently Enayat)

The theories D and U are bi-interpretable. Consequently, ACA is not tight.

Consequently every subtheory of ACA, such as ACA0 is also not tight.
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From ACA to Π1
k-CA

Abstractly, the strategy to prove the
non-tightness of ACA was this:

There is a minimum model of ACA.

There is a second-order axiom to
characterize this minimum model.

We can define a canonical Cohen generic
over this minimum model, and thereby get
a definable choice for an extension of the
minimum model.

The minimum model and its canonical
extension are bi-interpretable.

The construction machinery for the
bi-interpretation works even over
ω-nonstandard models.

To prove the non-tightness of Π1
k -CA we follow the same strategy.

The main difficulty is, how do you definably characterize the minimum model of Π1
k -CA? And

how do you do it so that the same construction can be carried out with nonstandard models?

I’ll sketch the highlights.
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Second-order arithmetic is set theory in disguise, and minimum models

Strong subsystems of Z2 are bi-interpretable
with fragments of ZFC−+ “every set is
countable”. (The minus in ZFC− means minus Powerset).

β-models of arithmetic are bi-interpretable
with transitive models of set theory.

Levels of the constructible universe L give
minimum transitive models of set theory,
whence we get minimum β-models of
arithmetic.

We can definably characterize these
minimum models.

This works for ill-founded models, and is
absolute to outer models (= models with
the same ordinals).

The set theory → arithmetic direction is
simple—restrict to subsets of ω.

The arithmetic → set theory direction is based
on the idea, going back to Aczel and Scott, of
coding sets as trees and constructing an
appropriate membership relation between trees.
A key observation, due to Simpson, is that
ATR0 suffices to carry out this interpretation.

Kameryn Williams (Bard College at Simon’s Rock) Interpretations in second-order arithmetic Online Logic Seminar (2023 Oct 5) 20 / 24



Second-order arithmetic is set theory in disguise, and minimum models

Strong subsystems of Z2 are bi-interpretable
with fragments of ZFC−+ “every set is
countable”. (The minus in ZFC− means minus Powerset).

β-models of arithmetic are bi-interpretable
with transitive models of set theory.

Levels of the constructible universe L give
minimum transitive models of set theory,
whence we get minimum β-models of
arithmetic.

We can definably characterize these
minimum models.

This works for ill-founded models, and is
absolute to outer models (= models with
the same ordinals).

An ω-model of arithmetic is a β-model if
it is correct about which of its relations
are well-founded.

A model M of set theory is transitive if
its membership relation is the true ∈ and
M is closed under ∈:

x ∈ y ∈ M implies x ∈ M.
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minimum transitive models of set theory,
whence we get minimum β-models of
arithmetic.

We can definably characterize these
minimum models.

This works for ill-founded models, and is
absolute to outer models (= models with
the same ordinals).

Important point! L has a definable global
well-order, allowing us to make canonical
choices.
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with transitive models of set theory.

Levels of the constructible universe L give
minimum transitive models of set theory,
whence we get minimum β-models of
arithmetic.

We can definably characterize these
minimum models.

This works for ill-founded models, and is
absolute to outer models (= models with
the same ordinals).

Key point: These levels of L don’t satisfy
Replacement, so they have definable cofinal
maps.

We need a little fine structure theory to get a
uniform definition.
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Do the same argument

Once you know how to characterize minimum
β-models you do the same construction.

(ω,Dk) = the minimum β-model of
Π1
k -CA.

Over (ω,Dk) define a canonical Cohen
generic C .

Then (ω,Dk) and (ω,Dk [C ]) are
bi-interpretable and satisfy different
theories.

You can do this construction uniformly.

Π1
k -CA is axiomatized by

ACA; and

Comprehension for Π1
k -formulae.

Compare to Π1
k -CA0 which doesn’t have full

induction.

Theorem (Freire-W.)

For each finite k, Π1
k -CA is not tight.
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Related results

Freire and I were originally interested in the case of class theory, and only
realized our constructions could be ported to arithmetic after the fact.

Theorem (Freire-W.)

The theories GB and GB + Π1
k -CA are not tight.

Independently to us, Ali Enayat proved:

Theorem (Enayat)

No finitely axiomatized subtheory of PA, ZF, Z2, or KM is tight.
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What remains to be done?

Conjecture (Enayat)

If T is a strict subtheory of Z2 (or PA or . . . ) then T is not tight.

We know this in the cases:

(Enayat) T is finitely axiomatizable;

(Freire-W.) T has any amount of the Induction schema but only a
bounded fragment of the Comprehension schema.

An interesting open case:

T ⊆ ZF has the full ∈-Induction and Separation schemata but only a
bounded fragment of Collection.

Other uses of bi-interpretations with minimum models, e.g. in second-order
arithmetic or higher recursion theory?
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Thank you!

Alfredo Roque Freire and Kameryn J. Williams,
Non-tightness in class theory and second-order arithmetic.
To appear: The Journal of Symbolic Logic.
Pre-print: arXiv:2212.04445 [math.LO]

Kameryn Williams (Bard College at Simon’s Rock) Interpretations in second-order arithmetic Online Logic Seminar (2023 Oct 5) 24 / 24

https://arxiv.org/abs/2212.04445

