Solid, neat tight: toward charting the boundary of definability

Kameryn J. Williams
they/them
Bard College at Simon's Rock
NERDS 25.0
2024 Mar 23

Categoricity in second-order logic

Second-order logic allows quantifiers over subsets of the domain, not just elements.

- (Dedekind) ω is the unique model of Peano arithmetic, formulated in second-order logic.
- (Zermelo) The only models of ZF set theory, formulated in second-order logic, are V_{κ} for κ inaccessible.

Categoricity in second-order logic

Second-order logic allows quantifiers over subsets of the domain, not just elements.

- (Dedekind) ω is the unique model of Peano arithmetic, formulated in second-order logic.
- (Zermelo) The only models of ZF set theory, formulated in second-order logic, are V_{κ} for κ inaccessible.

Suppose $\mathcal{M} \models \mathrm{PA}^{2}$. We build an isomorphism $\omega \cong \mathcal{M}$:
Map 0 to $0^{\mathcal{M}}$ and recursively map $n+1$ to the successor of where you mapped n.
By induction in \mathcal{M} the range of this embedding must be all of \mathcal{M}.

Categoricity in second-order logic

Second-order logic allows quantifiers over subsets of the domain, not just elements.

- (Dedekind) ω is the unique model of Peano arithmetic, formulated in second-order logic.
- (Zermelo) The only models of ZF set theory, formulated in second-order logic, are V_{κ} for κ inaccessible.

First-order logic only allows quantifiers over elements. It cannot have such absolute categoricity results.

- (Löwenheim-Skolem) If a theory T has an infinite model then T has a model of every infinite cardinality $\geq|T|$.

Suppose $\mathcal{M} \models \mathrm{PA}^{2}$. We build an isomorphism $\omega \cong \mathcal{M}$:
Map 0 to $0^{\mathcal{M}}$ and recursively map $n+1$ to the successor of where you mapped n.
By induction in \mathcal{M} the range of this embedding must be all of \mathcal{M}.

Non-categoricity is as bad as possible

Fact

There are continuum many non-isomorphic countable models of Peano arithmetic.
This remains true if you extend PA to a completion.

Non-categoricity is as bad as possible

Fact

There are continuum many non-isomorphic countable models of Peano arithmetic.
This remains true if you extend PA to a completion.
If something is impossible, as mathematicians we want to see how close we can get.

Question

Can we find categoricity-like properties which are enjoyed by the first-order logic formulations of important foundational theories like PA or ZF?

First try: internal categoricity

"Every model of arithmetic which ω can see is isomorphic to it."

First try: internal categoricity

"Every model of arithmetic which ω can see is isomorphic to it."

To say what this means we need the notion of an interpretation.

Interpretations

- An interpretation \mathcal{I} of a structure \mathcal{N} in \mathcal{M} is a collection of formulae which gives an isomorphic copy of \mathcal{N} in \mathcal{M} : one formula for the domain, others for the functions and relations.
- Write $\mathcal{M} \unrhd^{I} \mathcal{N}$

Interpretations

- An interpretation \mathcal{I} of a structure \mathcal{N} in \mathcal{M} is a collection of formulae which gives an isomorphic copy of \mathcal{N} in \mathcal{M} : one formula for the domain, others for the functions and relations.
- Write $\mathcal{M} \unrhd^{I} \mathcal{N}$
- $T \unrhd^{I} U$ on level of theories.
- $\mathcal{M} \unrhd_{\text {par }} \mathcal{N}$ means parameters are used.

All these relations are pre-orders.

Interpretations

- An interpretation \mathcal{I} of a structure \mathcal{N} in \mathcal{M} is a collection of formulae which gives an isomorphic copy of \mathcal{N} in \mathcal{M} : one formula for the domain, others for the functions and relations.
- Write $\mathcal{M} \unrhd^{I} \mathcal{N}$
- $T \unrhd^{I} U$ on level of theories.
- $\mathcal{M} \unrhd_{\text {par }} \mathcal{N}$ means parameters are used.

All these relations are pre-orders.

Examples:

- $\mathbb{R} \unrhd \mathbb{C}$ but $\mathbb{R} \unrhd \mathbb{Z}$

Interpretations

- An interpretation \mathcal{I} of a structure \mathcal{N} in \mathcal{M} is a collection of formulae which gives an isomorphic copy of \mathcal{N} in \mathcal{M} : one formula for the domain, others for the functions and relations.
- Write $\mathcal{M} \unrhd^{\mathcal{I}} \mathcal{N}$
- $T \unrhd^{\mathcal{I}} U$ on level of theories.
- $\mathcal{M} \unrhd_{\text {par }} \mathcal{N}$ means parameters are used.

All these relations are pre-orders.

Examples:

- $\mathbb{R} \unrhd \mathbb{C}$ but $\mathbb{R} \unrhd \mathbb{Z}$
- $\mathrm{V}_{\omega} \unrhd \omega$ and $\omega \unrhd \mathrm{V}_{\omega}$

Interpretations

- An interpretation \mathcal{I} of a structure \mathcal{N} in \mathcal{M} is a collection of formulae which gives an isomorphic copy of \mathcal{N} in \mathcal{M} : one formula for the domain, others for the functions and relations.
- Write $\mathcal{M} \unrhd^{\mathcal{I}} \mathcal{N}$
- $T \unrhd^{\mathcal{I}} U$ on level of theories.
- $\mathcal{M} \unrhd_{\text {par }} \mathcal{N}$ means parameters are used.

All these relations are pre-orders.

Examples:

- $\mathbb{R} \unrhd \mathbb{C}$ but $\mathbb{R} \unrhd \mathbb{Z}$
- $\mathrm{V}_{\omega} \unrhd \omega$ and $\omega \unrhd \mathrm{V}_{\omega}$
- $\mathrm{ZFC}{ }^{\urcorner \infty} \unrhd \mathrm{PA}$ and $\mathrm{PA} \unrhd Z F C^{\neg \infty}$

Interpretations

- An interpretation \mathcal{I} of a structure \mathcal{N} in \mathcal{M} is a collection of formulae which gives an isomorphic copy of \mathcal{N} in \mathcal{M} : one formula for the domain, others for the functions and relations.
- Write $\mathcal{M} \unrhd^{\mathcal{I}} \mathcal{N}$
- $T \unrhd^{\mathcal{I}} \cup$ on level of theories.
- $\mathcal{M} \unrhd_{\text {par }} \mathcal{N}$ means parameters are used.

All these relations are pre-orders.

Examples:

- $\mathbb{R} \unrhd \mathbb{C}$ but $\mathbb{R} \unrhd \mathbb{Z}$
- $\mathrm{V}_{\omega} \unrhd \omega$ and $\omega \unrhd \mathrm{V}_{\omega}$
- $Z F C^{\neg \infty} \unrhd P A$ and $P A \unrhd Z F C \neg \infty$
- $\mathrm{ZF} \unrhd \mathrm{ZFC}+\mathrm{V}=\mathrm{L}$
- $\mathrm{ZFC}+\mathrm{V}=\mathrm{L} \unrhd \mathrm{ZF}$

Interpretations

- An interpretation \mathcal{I} of a structure \mathcal{N} in \mathcal{M} is a collection of formulae which gives an isomorphic copy of \mathcal{N} in \mathcal{M} : one formula for the domain, others for the functions and relations.
- Write $\mathcal{M} \unrhd^{\mathcal{I}} \mathcal{N}$
- $T \unrhd^{\mathcal{I}} U$ on level of theories.
- $\mathcal{M} \unrhd_{\text {par }} \mathcal{N}$ means parameters are used.

All these relations are pre-orders.

Examples:

- $\mathbb{R} \unrhd \mathbb{C}$ but $\mathbb{R} \unrhd \mathbb{Z}$
- $\mathrm{V}_{\omega} \unrhd \omega$ and $\omega \unrhd \mathrm{V}_{\omega}$
- $\mathrm{ZFC}{ }^{\neg \infty} \unrhd \mathrm{PA}$ and $\mathrm{PA} \unrhd \mathrm{ZFC}{ }^{\neg \infty}$
- $\mathrm{ZF} \unrhd \mathrm{ZFC}+\mathrm{V}=\mathrm{L}$
- $\mathrm{ZFC}+\mathrm{V}=\mathrm{L} \unrhd \mathrm{ZF}$
- $A C A_{0} \unrhd P A$ but PA $\unrhd A C A_{0}$
- $\mathrm{RCA}_{0} \unrhd I \Sigma_{1}$ but $I \Sigma_{1} \unrhd \mathrm{RCA}_{0}$

Interpretations

- An interpretation \mathcal{I} of a structure \mathcal{N} in \mathcal{M} is a collection of formulae which gives an isomorphic copy of \mathcal{N} in \mathcal{M} : one formula for the domain, others for the functions and relations.
- Write $\mathcal{M} \unrhd^{\mathcal{I}} \mathcal{N}$
- $T \unrhd^{\mathcal{I}} U$ on level of theories.
- $\mathcal{M} \unrhd_{\text {par }} \mathcal{N}$ means parameters are used.

All these relations are pre-orders.

Examples:

- $\mathbb{R} \unrhd \mathbb{C}$ but $\mathbb{R} \unrhd \mathbb{Z}$
- $\mathrm{V}_{\omega} \unrhd \omega$ and $\omega \unrhd \mathrm{V}_{\omega}$
- $Z F C^{\neg \infty} \unrhd P A$ and $P A \unrhd Z F C \neg \infty$
- $\mathrm{ZF} \unrhd \mathrm{ZFC}+\mathrm{V}=\mathrm{L}$
- $\mathrm{ZFC}+\mathrm{V}=\mathrm{L} \unrhd \mathrm{ZF}$
- $A C A_{0} \unrhd P A$ but PA $\unrhd \mathrm{ACA}_{0}$
- $R^{2} A_{0} \unrhd I \Sigma_{1}$ but $I \Sigma_{1} \unrhd \mathrm{RCA}_{0}$

Fact: Doing $\mathrm{ZFC}{ }^{\neg \infty} \unrhd \mathrm{PA}$ then $\mathrm{PA} \unrhd \mathrm{ZFC}{ }^{\infty}$ or vice versa gives an isomorphism. But that's not true for doing $\mathrm{ZF} \unrhd \mathrm{ZFC}+\mathrm{V}=\mathrm{L}$ then $\mathrm{ZFC}+\mathrm{V}=\mathrm{L} \unrhd \mathrm{ZF}$.

Bi-interpretations

U is a retract of T if

- $U \unrhd^{\mathcal{I}} T \unrhd^{\mathcal{J}} U$ and $\mathcal{J} \circ \mathcal{I}$ is definably - $\mathcal{M} \unrhd^{\mathcal{I}} \mathcal{N} \unrhd^{\mathcal{J}} \mathcal{M}^{*} \Longrightarrow \mathcal{M} \cong \mathcal{J} \circ \mathcal{I} \mathcal{M}^{*}$ isomorphic to the identity interpretation on U.

Bi-interpretations

U is a retract of T if

- $U \unrhd^{\mathcal{I}} T \unrhd \mathcal{J} U$ and $\mathcal{J} \circ \mathcal{I}$ is definably isomorphic to the identity interpretation on U.
U and T are bi-interpretable if
- They are retracts of each other via the same interpretations.
- $\mathcal{M} \unrhd^{\mathcal{I}} \mathcal{N} \unrhd^{\mathcal{J}} \mathcal{M}^{*} \Longrightarrow \mathcal{M} \cong \mathcal{J} \circ \mathcal{I} \mathcal{M}^{*}$
- $\mathcal{M} \unrhd^{\mathcal{I}} \mathcal{N} \unrhd^{\mathcal{J}} \mathcal{M}^{*} \Longrightarrow \mathcal{M} \cong \mathcal{J} \circ \mathcal{I} \mathcal{M}^{*}$ and
$\mathcal{N} \unrhd^{\mathcal{J}} \mathcal{M} \unrhd^{\mathcal{I}} \mathcal{N}^{*} \Longrightarrow \mathcal{N} \cong{ }^{\mathcal{I} \circ} \mathcal{J} \mathcal{N}^{*}$

Bi-interpretations

U is a retract of T if

- $U \unrhd^{\mathcal{I}} T \unrhd^{\mathcal{J}} U$ and $\mathcal{J} \circ \mathcal{I}$ is definably
- $\mathcal{M} \unrhd^{\mathcal{I}} \mathcal{N} \unrhd^{\mathcal{J}} \mathcal{M}^{*} \Longrightarrow \mathcal{M} \cong \mathcal{J} \circ \mathcal{I} \mathcal{M}^{*}$ isomorphic to the identity interpretation on U.
U and T are bi-interpretable if
- They are retracts of each other via the same interpretations.
- $\mathcal{M} \unrhd^{\mathcal{I}} \mathcal{N} \unrhd^{\mathcal{J}} \mathcal{M}^{*} \Longrightarrow \mathcal{M} \cong \mathcal{J} \circ \mathcal{I} \mathcal{M}^{*}$ and

$$
\mathcal{N} \unrhd^{\mathcal{J}} \mathcal{M} \unrhd^{\mathcal{I}} \mathcal{N}^{*} \Longrightarrow \mathcal{N} \cong \mathcal{I} \circ \mathcal{J} \mathcal{N}^{*}
$$

Examples:

- $\mathrm{ZFC}{ }^{\urcorner \infty}$ and PA are bi-interpretable.
- $\mathrm{ZFC}+\mathrm{V}=\mathrm{L}$ is a retract of ZF .

Bi-interpretations

U is a retract of T if

- $U \unrhd^{\mathcal{I}} T \unrhd^{\mathcal{J}} U$ and $\mathcal{J} \circ \mathcal{I}$ is definably
- $\mathcal{M} \unrhd^{\mathcal{I}} \mathcal{N} \unrhd^{\mathcal{J}} \mathcal{M}^{*} \Longrightarrow \mathcal{M} \cong \mathcal{J} \circ \mathcal{I} \mathcal{M}^{*}$ isomorphic to the identity interpretation on U.
U and T are bi-interpretable if
- They are retracts of each other via the same interpretations.
- $\mathcal{M} \unrhd^{\mathcal{I}} \mathcal{N} \unrhd^{\mathcal{I}} \mathcal{M}^{*} \Longrightarrow \mathcal{M} \cong \mathcal{J} \circ \mathcal{I} \mathcal{M}^{*}$ and

$$
\mathcal{N} \unrhd^{\mathcal{J}} \mathcal{M} \unrhd^{\mathcal{I}} \mathcal{N}^{*} \Longrightarrow \mathcal{N} \cong \mathcal{I} \circ \mathcal{J} \mathcal{N}^{*}
$$

Examples:

- $\mathrm{ZFC}{ }^{\neg \infty}$ and PA are bi-interpretable.
- $Z F C+V=L$ is a retract of $Z F$.
- But ZF and ZFC $+\mathrm{V}=\mathrm{L}$ are not bi-interpretable (Enayat).

First try: internal categoricity

"Every model of arithmetic which ω can see is isomorphic to it."

```
Question
If }\omega\unrhd\mathcal{N}\mathrm{ must }\omega\cong\mathcal{N}\mathrm{ ?
```


First try: internal categoricity

"Every model of arithmetic which ω can see is isomorphic to it."

```
Question
If }\omega\unrhd\mathcal{N}\mathrm{ must }\omega\cong\mathcal{N}\mathrm{ ?
```

This is still badly false!

- If $T \supseteq$ PA is consistent and arithmetical then ω interprets a model of T.

First try: internal categoricity

"Every model of arithmetic which ω can see is isomorphic to it."

```
Question
If }\omega\unrhd\mathcal{N}\mathrm{ must }\omega\cong\mathcal{N}\mathrm{ ?
```

This is still badly false!

- If $T \supseteq$ PA is consistent and arithmetical then ω interprets a model of T.

But we avoid loops:

- If $\omega \unrhd_{\text {par }} \mathcal{N} \unrhd_{\text {par }} \omega$ then $\mathcal{N} \cong \omega$. (Because a model of arithmetic cannot interpret a shorter model.)

Solidity

A theory T is solid if

- For all models $\mathcal{M}, \mathcal{M}^{*}, \mathcal{N}$ of T
- If $\mathcal{M} \unrhd_{\text {par }} \mathcal{N} \unrhd_{\text {par }} \mathcal{M}^{*}$ and
- There is a parametrically definable isomorphism $\mathcal{M} \cong \mathcal{M}^{*}$,
- Then there is a parametrically definable isomorphism $\mathcal{M} \cong \mathcal{N}$.

Solidity

A theory T is solid if

- For all models $\mathcal{M}, \mathcal{M}^{*}, \mathcal{N}$ of T
- If $\mathcal{M} \unrhd_{\text {par }} \mathcal{N} \unrhd_{\text {par }} \mathcal{M}^{*}$ and
- There is a parametrically definable isomorphism $\mathcal{M} \cong \mathcal{M}^{*}$,
- Then there is a parametrically definable isomorphism $\mathcal{M} \cong \mathcal{N}$.

Example:

- (Visser) PA is solid.

Because the " $\omega \unrhd \mathcal{N} \unrhd \omega$ implies $\mathcal{N} \cong \omega$ " argument can be made to work over any $\mathcal{M} \vDash \mathrm{PA}$.

Neatness and tightness

T is neat if

- Given two extensions U, V of T, if U is a retract of V then $U \supseteq V$.
- $\mathcal{M} \unrhd^{\mathcal{I}} \mathcal{N} \unrhd^{\mathcal{J}} \mathcal{M}^{*} \Longrightarrow \mathcal{M} \cong \mathcal{J} \circ \mathcal{I} \mathcal{M}^{*}$

Neatness and tightness

T is neat if

- Given two extensions U, V of T, if U is a retract of V then $U \supseteq V$.
- $\mathcal{M} \unrhd^{\mathcal{I}} \mathcal{N} \unrhd^{\mathcal{J}} \mathcal{M}^{*} \Longrightarrow \mathcal{M} \cong \mathcal{J} \circ \mathcal{I} \mathcal{M}^{*}$
T is tight if
- Given two extensions U, V of T, if U and V are bi-interpretable then $U=V$.
(U and V must be in the same language as T, to avoid boring counterexamples.)

Neatness and tightness

T is neat if

- Given two extensions U, V of T, if U is a retract of V then $U \supseteq V$.
- $\mathcal{M} \unrhd^{\mathcal{I}} \mathcal{N} \unrhd^{\mathcal{J}} \mathcal{M}^{*} \Longrightarrow \mathcal{M} \cong \mathcal{J} \circ \mathcal{I} \mathcal{M}^{*}$
T is tight if
- Given two extensions U, V of T, if U and V are bi-interpretable then $U=V$.
(U and V must be in the same language as T, to avoid boring counterexamples.)
- Solidity implies neatness and neatness implies tightness.
- But the converses do not hold.

Neatness and tightness

T is neat if

- Given two extensions U, V of T, if U is a retract of V then $U \supseteq V$.
- $\mathcal{M} \unrhd^{\mathcal{I}} \mathcal{N} \unrhd \unrhd^{\mathcal{J}} \mathcal{M}^{*} \Longrightarrow \mathcal{M} \cong \mathcal{J} \circ \mathcal{I} \mathcal{M}^{*}$
T is tight if
- Given two extensions U, V of T, if U and V are bi-interpretable then $U=V$.
(U and V must be in the same language as T, to avoid boring counterexamples.)
- Solidity implies neatness and neatness implies tightness.
- But the converses do not hold.
- All of these properties are preserved by bi-interpretations.
- All of these properties are preserved by adding axioms (in the same language).

Neatness and tightness

T is neat if

- Given two extensions U, V of T, if U is a retract of V then $U \supseteq V$.
- $\mathcal{M} \unrhd^{\mathcal{I}} \mathcal{N} \unrhd \unrhd^{\mathcal{J}} \mathcal{M}^{*} \Longrightarrow \mathcal{M} \cong \mathcal{J} \circ \mathcal{I} \mathcal{M}^{*}$
T is tight if
- Given two extensions U, V of T, if U and V are bi-interpretable then $U=V$.
(U and V must be in the same language as T, to avoid boring counterexamples.)
- Solidity implies neatness and neatness implies tightness.
- But the converses do not hold.
- All of these properties are preserved by bi-interpretations.
- All of these properties are preserved by adding axioms (in the same language).
- These properties are really only interesting for sequential theories-those which are subject to the first incompleteness theorem.
- A complete theory such as ACF_{0} is trivially neat.

Positive examples

Theorem

The following theories are all solid, and hence also neat and tight.

- (Visser) PA
- (Enayat) ZF
- (Enayat) Z_{2}, second-order arithmetic with full comprehension
- (Enayat) KM, class theory with full comprehension

Positive examples

Theorem

The following theories are all solid, and hence also neat and tight.

- (Visser) PA
- (Enayat) ZF
- (Enayat) Z_{2}, second-order arithmetic with full comprehension
- (Enayat) KM, class theory with full comprehension

Question (Enayat): Do we need the full strength of these theories to get these quasi-categoricity properties?

Negative examples

Theorem

None of the following are tight, and hence are neither neat nor solid.

- (Freire-Hamkins) Zermelo set theory
- (Freire-Hamkins) ZF- , set theory without Powerset
- (Enayat) Finite subtheories of $\mathrm{PA}, \mathrm{ZF}, \mathrm{Z}_{2}$, or KM
- (Freire-W.) ACA and Π_{k}^{1}-CA, i.e. with full induction, and the analogous subtheories of KM

These results suggest that tightness characterizes the important foundational theories like PA and ZF.

A break for some motivation

A break for some motivation

"Why should I, someone who's not interested in interpretations nor quasi-categoricity, care about any of this?"

A break for some motivation

"Why should I, someone who's not interested in interpretations nor quasi-categoricity, care about any of this?"

- The constructions used are flexible.
- They should apply to more than just mucking about with bi-interpretations.

A break for some motivation

"Why should I, someone who's not interested in interpretations nor quasi-categoricity, care about any of this?"

- The constructions used are flexible.
- They should apply to more than just mucking about with bi-interpretations.

To that end, let me sketch the construction for one result, in enough detail to give you an idea how it might be bent into a new shape.

A break for some motivation

"Why should I, someone who's not interested in interpretations nor quasi-categoricity, care about any of this?"

- The constructions used are flexible.
- They should apply to more than just mucking about with bi-interpretations.

To that end, let me sketch the construction for one result, in enough detail to give you an idea how it might be bent into a new shape.

Theorem

ACA is not tight: there are distinct but bi-interpretable extensions of ACA.

Identifying the arithmetical sets

- (Tarski) $0^{(\omega)}$ is not arithmetical.

Identifying the arithmetical sets

- (Tarski) $0^{(\omega)}$ is not arithmetical.
- (Mostowski) But it is definable over the arithmetical sets.

Identifying the arithmetical sets

- (Tarski) $0^{(\omega)}$ is not arithmetical.
- (Mostowski) But it is definable over the arithmetical sets.
- For each $k \in \omega$, the k-th jump $0^{(k)}$ is arithmetical.
- So we can define $0^{(\omega)}$ by identifying which sets are the $0^{(k)}$ then gluing them together.
- Key point: The $0^{(k)}$ are not uniformly arithmetical, but the property of being a $0^{(k)}$ is uniformly recognizable.

Identifying the arithmetical sets

- (Tarski) $0^{(\omega)}$ is not arithmetical.
- (Mostowski) But it is definable over the arithmetical sets.
- Indeed, it has a definition absolute between all ω-models of ACA (= Turing ideals closed under jump $=\mathcal{X} \subseteq \mathcal{P}(\omega)$ closed under arithmetical comprehension).
- Thus, any ω-model of ACA can definably identify which of its sets are arithmetical.
- For each $k \in \omega$, the k-th jump $0^{(k)}$ is arithmetical.
- So we can define $0^{(\omega)}$ by identifying which sets are the $0^{(k)}$ then gluing them together.
- Key point: The $0^{(k)}$ are not uniformly arithmetical, but the property of being a $0^{(k)}$ is uniformly recognizable.

Identifying the arithmetical sets

- (Tarski) $0^{(\omega)}$ is not arithmetical.
- (Mostowski) But it is definable over the arithmetical sets.
- Indeed, it has a definition absolute between all ω-models of ACA (= Turing ideals closed under jump $=\mathcal{X} \subseteq \mathcal{P}(\omega)$ closed under arithmetical comprehension).
- Thus, any ω-model of ACA can definably identify which of its sets are arithmetical.
- For each $k \in \omega$, the k-th jump $0^{(k)}$ is arithmetical.
- So we can define $0^{(\omega)}$ by identifying which sets are the $0^{(k)}$ then gluing them together.
- Key point: The $0^{(k)}$ are not uniformly arithmetical, but the property of being a $0^{(k)}$ is uniformly recognizable.
- We just saw a Σ_{1}^{1} definition. There's also a Π_{1}^{1} definition.

Forcing over the arithmetical sets

- We can add a new real by finite approximations.
- \mathbb{C} is the poset consisting of finite partial functions $\omega \rightarrow 2$, ordered by extension.
- A real $c \subseteq \omega$ is generic over a Turing ideal \mathcal{X} if it get below every dense set in \mathcal{X}.
- (Rasiowa-Sikorski) If \mathcal{X} is countable you can always find a generic.

Forcing over the arithmetical sets

- We can add a new real by finite approximations.
- \mathbb{C} is the poset consisting of finite partial functions $\omega \rightarrow 2$, ordered by extension.
- A real $c \subseteq \omega$ is generic over a Turing ideal \mathcal{X} if it get below every dense set in \mathcal{X}.
- (Rasiowa-Sikorski) If \mathcal{X} is countable you can always find a generic.
- $\mathcal{X}[c]$ satisfies ACA if \mathcal{X} satisfies ACA.

Forcing over the arithmetical sets

- We can add a new real by finite approximations.
- \mathbb{C} is the poset consisting of finite partial functions $\omega \rightarrow 2$, ordered by extension.
- A real $c \subseteq \omega$ is generic over a Turing ideal \mathcal{X} if it get below every dense set in \mathcal{X}.
- (Rasiowa-Sikorski) If \mathcal{X} is countable you can always find a generic.
- $\mathcal{X}[c]$ satisfies ACA if \mathcal{X} satisfies ACA.

Fact: Forcing is a computable process, given sufficient data. If you have uniform access to finite jumps of reals in \mathcal{X} you can compute a generic over \mathcal{X}.

Forcing over the arithmetical sets

- We can add a new real by finite approximations.
- \mathbb{C} is the poset consisting of finite partial functions $\omega \rightarrow 2$, ordered by extension.
- A real $c \subseteq \omega$ is generic over a Turing ideal \mathcal{X} if it get below every dense set in \mathcal{X}.
- (Rasiowa-Sikorski) If \mathcal{X} is countable you can always find a generic.
- $\mathcal{X}[c]$ satisfies ACA if \mathcal{X} satisfies ACA.

Fact: Forcing is a computable process, given sufficient data. If you have uniform access to finite jumps of reals in \mathcal{X} you can compute a generic over \mathcal{X}.

- Given $0^{(\omega)}$ you can compute a generic over the arithmetical sets.
- Since $0^{(\omega)}$ is Δ_{1}^{1}-definable over any ω-model of ACA we get that any ω-model of ACA can define a generic over the arithmetical sets.

Forcing over the arithmetical sets

- We can add a new real by finite approximations.
- \mathbb{C} is the poset consisting of finite partial functions $\omega \rightarrow 2$, ordered by extension.
- A real $c \subseteq \omega$ is generic over a Turing ideal \mathcal{X} if it get below every dense set in \mathcal{X}.
- (Rasiowa-Sikorski) If \mathcal{X} is countable you can always find a generic.
- $\mathcal{X}[c]$ satisfies ACA if \mathcal{X} satisfies ACA.

Fact: Forcing is a computable process, given sufficient data. If you have uniform access to finite jumps of reals in \mathcal{X} you can compute a generic over \mathcal{X}.

- Given $0^{(\omega)}$ you can compute a generic over the arithmetical sets.
- Since $0^{(\omega)}$ is Δ_{1}^{1}-definable over any ω-model of ACA we get that any ω-model of ACA can define a generic over the arithmetical sets.
- Indeed, they can all define the same generic, call it c .

Bi-interpretations

Two structures:

$$
(\omega, \mathcal{A}) \quad \text { and } \quad(\omega, \mathcal{A}[\mathrm{c}])
$$

\mathcal{A} is the arithmetical sets.

Bi-interpretations

Two structures:

$$
(\omega, \mathcal{A}) \quad \text { and } \quad(\omega, \mathcal{A}[\mathrm{c}])
$$

\mathcal{A} is the arithmetical sets.

- The two structures interpret each other.
- Indeed, it's a bi-interpretation.

Bi-interpretations

Two structures:

$$
(\omega, \mathcal{A}) \quad \text { and } \quad(\omega, \mathcal{A}[\mathrm{c}])
$$

\mathcal{A} is the arithmetical sets.

- The two structures interpret each other.
- Indeed, it's a bi-interpretation.

And they have different theories:

- \mathcal{A} thinks its elements are exactly the arithmetical sets
- $\mathcal{A}[c]$ thinks its elements are exactly the sets arithmetical in c

Bi-interpretations

Two structures:

$$
(\omega, \mathcal{A}) \quad \text { and } \quad(\omega, \mathcal{A}[c])
$$

All this can be done on the level of theories.
\mathcal{A} is the arithmetical sets.

- The two structures interpret each other.
- Indeed, it's a bi-interpretation.

And they have different theories:

- \mathcal{A} thinks its elements are exactly the arithmetical sets
- $\mathcal{A}[c]$ thinks its elements are exactly the sets arithmetical in c

Bi-interpretations

Two structures:

$$
(\omega, \mathcal{A}) \quad \text { and } \quad(\omega, \mathcal{A}[\mathrm{c}])
$$

\mathcal{A} is the arithmetical sets.

- The two structures interpret each other.
- Indeed, it's a bi-interpretation.

And they have different theories:

- \mathcal{A} thinks its elements are exactly the arithmetical sets
- $\mathcal{A}[c]$ thinks its elements are exactly the sets arithmetical in c

All this can be done on the level of theories.

- ACA has full induction, which makes the arguments about defining $0^{(\omega)}$ and c work, even over an ω-nonstandard model.
- The definitions are sufficiently absolute to enable a bi-interpretation:
- ACA + "I am the arithmetical sets" and
- ACA + "I am the sets arithmetical in c".

Thus, ACA is not tight.

Generalizing the construction

Abstractly, these are the ingredients we need:

- A canonical structure;
- How to extend this structure;
- Everything to be sufficiently absolute;
- This can be done on the level of theories.

Generalizing the construction

Abstractly, these are the ingredients we need:

- A canonical structure;
- How to extend this structure;
- Everything to be sufficiently absolute;
- This can be done on the level of theories.

For ACA:

- The arithmetical sets;
- Cohen forcing;
- The absoluteness of $0^{(\omega)}$;
- Given by the induction schema.

Generalizing the construction

Abstractly, these are the ingredients we need:

- A canonical structure;
- How to extend this structure;
- Everything to be sufficiently absolute;
- This can be done on the level of theories.

Generalizing the construction

Abstractly, these are the ingredients we need:

- A canonical structure;
- How to extend this structure;
- Everything to be sufficiently absolute;
- This can be done on the level of theories.

Can be done for Π_{k}^{1}-CA:

- The minimum β-model of Π_{k}^{1}-CA;
- Cohen forcing;
- The absoluteness of L;
- A little fine structure theory.

Generalizing the construction

Abstractly, these are the ingredients we need:

- A canonical structure;
- How to extend this structure;
- Everything to be sufficiently absolute;
- This can be done on the level of theories.

Generalizing the construction

Abstractly, these are the ingredients we need:

- A canonical structure;
- How to extend this structure;
- Everything to be sufficiently absolute;
- This can be done on the level of theories.

For class theories $T \subseteq \mathrm{KM}$:

- Minimum models again;
- Cohen forcing again;
- L again;
- Fine structure theory again.

Generalizing the construction

Abstractly, these are the ingredients we need:

- A canonical structure;
- How to extend this structure;
- Everything to be sufficiently absolute;
- This can be done on the level of theories.

Generalizing the construction

Abstractly, these are the ingredients we need:

- A canonical structure;
- How to extend this structure;
- Everything to be sufficiently absolute;
- This can be done on the level of theories.

Other uses?

- Maybe only need the first three?
- Or just two of them?

Back to Enayat's conjecture

Conjecture (Enayat)

A theory T of arithmetic is tight if and only if $T \supseteq$ PA. And similarly for ZF and other important foundational theories.

Back to Enayat's conjecture

Conjecture (Enayat)

A theory T of arithmetic is tight if and only if $T \supseteq$ PA.
And similarly for ZF and other important foundational theories.
What makes the construction for the non-tightness of ACA work was:

- The arithmetical sets lack semantic closure.

Over them you can define sets which are not arithmetical.

Back to Enayat's conjecture

Conjecture (Enayat)

A theory T of arithmetic is tight if and only if $T \supseteq$ PA.
And similarly for ZF and other important foundational theories.
What makes the construction for the non-tightness of ACA work was:

- The arithmetical sets lack semantic closure.

Over them you can define sets which are not arithmetical.
Constructions for other negative results have a similar flavor.

Back to Enayat's conjecture

Conjecture (Enayat)

A theory T of arithmetic is tight if and only if $T \supseteq$ PA.
And similarly for ZF and other important foundational theories.
What makes the construction for the non-tightness of ACA work was:

- The arithmetical sets lack semantic closure.

Over them you can define sets which are not arithmetical.
Constructions for other negative results have a similar flavor.
A moral: These categoricity-like properties are characterizing semantic closure.

Some open questions

- Is there a finitely axiomatizable sequential tight theory? (Enayat) No for subtheories of PA and ZF.
- Is $\mathrm{PA}^{-}+$Collection tight?
(Enayat-Łełyk) It is not solid.
- Is there an extension of KP which is solid?

Thank you!

References

- Ali Enayat, "Variations on a Visserian theme", In: Liber Amicorum Alberti, a Tribute to Albert Visser (2016).
Preprint: arXiv:1702.07093 [math.LO].
- Ali Enayat and Mateusz Łełyk, "Categoricity-like properties in the first-order realm", under review.
Preprint: https://www.researchgate.net/publication/377931753
- Alfredo Roque Freire and Kameryn J. Williams, "Non-tightness in class theory and second-order arithmetic", JSL (2023).
Preprint: arXiv:2212.04445 [math.LO].
- Albert Visser, "Categories of theories and interpretations", In: Logic in Tehran (2006).

