Solid, neat tight: toward charting the boundary of definability

Kameryn J. Williams they/them

Bard College at Simon's Rock

NERDS 25.0 2024 Mar 23

Categoricity in second-order logic

Second-order logic allows quantifiers over subsets of the domain, not just elements.

- (Dedekind) ω is the unique model of Peano arithmetic, formulated in second-order logic.
- (Zermelo) The only models of ZF set theory, formulated in second-order logic, are V_{κ} for κ inaccessible.

Categoricity in second-order logic

Second-order logic allows quantifiers over subsets of the domain, not just elements.

- (Dedekind) ω is the unique model of Peano arithmetic, formulated in second-order logic.
- (Zermelo) The only models of ZF set theory, formulated in second-order logic, are V_{κ} for κ inaccessible.

Suppose $\mathcal{M} \models PA^2$. We build an isomorphism $\omega \cong \mathcal{M}$:

Map 0 to $0^{\mathcal{M}}$ and recursively map n+1 to the successor of where you mapped n.

By induction in $\mathcal M$ the range of this embedding must be all of $\mathcal M$.

Categoricity in second-order logic

Second-order logic allows quantifiers over subsets of the domain, not just elements.

- (Dedekind) ω is the unique model of Peano arithmetic, formulated in second-order logic.
- (Zermelo) The only models of ZF set theory, formulated in second-order logic, are V_{κ} for κ inaccessible.

First-order logic only allows quantifiers over elements. It cannot have such absolute categoricity results.

• (Löwenheim–Skolem) If a theory T has an infinite model then T has a model of every infinite cardinality $\geq |T|$.

Suppose $\mathcal{M} \models \mathsf{PA}^2$. We build an isomorphism $\omega \cong \mathcal{M}$:

Map 0 to $0^{\mathcal{M}}$ and recursively map n+1 to the successor of where you mapped n.

By induction in $\mathcal M$ the range of this embedding must be all of $\mathcal M$.

Non-categoricity is as bad as possible

Fact

There are continuum many non-isomorphic countable models of Peano arithmetic.

This remains true if you extend PA to a completion.

Non-categoricity is as bad as possible

Fact

There are continuum many non-isomorphic countable models of Peano arithmetic.

This remains true if you extend PA to a completion.

If something is impossible, as mathematicians we want to see how close we can get.

Question

Can we find categoricity-like properties which are enjoyed by the first-order logic formulations of important foundational theories like PA or ZF?

"Every model of arithmetic which ω can see is isomorphic to it."

4 / 20

"Every model of arithmetic which ω can see is isomorphic to it."

To say what this means we need the notion of an interpretation.

4 / 20

- An interpretation \mathcal{I} of a structure \mathcal{N} in \mathcal{M} is a collection of formulae which gives an isomorphic copy of \mathcal{N} in \mathcal{M} : one formula for the domain, others for the functions and relations.
- Write $\mathcal{M} \trianglerighteq^{\mathcal{I}} \mathcal{N}$

- An interpretation \mathcal{I} of a structure \mathcal{N} in \mathcal{M} is a collection of formulae which gives an isomorphic copy of \mathcal{N} in \mathcal{M} : one formula for the domain, others for the functions and relations.
- Write $\mathcal{M} \trianglerighteq^{\mathcal{I}} \mathcal{N}$
- $T \trianglerighteq^{\mathcal{I}} U$ on level of theories.
- $\mathcal{M} \trianglerighteq_{par} \mathcal{N}$ means parameters are used.

All these relations are pre-orders.

- An interpretation \mathcal{I} of a structure \mathcal{N} in \mathcal{M} is a collection of formulae which gives an isomorphic copy of \mathcal{N} in \mathcal{M} : one formula for the domain, others for the functions and relations.
- Write $\mathcal{M} \trianglerighteq^{\mathcal{I}} \mathcal{N}$
- $T \trianglerighteq^{\mathcal{I}} U$ on level of theories.
- $\mathcal{M} \trianglerighteq_{par} \mathcal{N}$ means parameters are used.

All these relations are pre-orders.

Examples:

ullet $\mathbb{R} \trianglerighteq \mathbb{C}$ but $\mathbb{R} \not\trianglerighteq \mathbb{Z}$

- An interpretation \mathcal{I} of a structure \mathcal{N} in \mathcal{M} is a collection of formulae which gives an isomorphic copy of \mathcal{N} in \mathcal{M} : one formula for the domain, others for the functions and relations.
- Write $\mathcal{M} \trianglerighteq^{\mathcal{I}} \mathcal{N}$
- $T \trianglerighteq^{\mathcal{I}} U$ on level of theories.
- $\mathcal{M} \trianglerighteq_{par} \mathcal{N}$ means parameters are used.

All these relations are pre-orders.

Examples:

- ullet $\mathbb{R} \trianglerighteq \mathbb{C}$ but $\mathbb{R} \not\trianglerighteq \mathbb{Z}$
- $\bullet \ V_{\omega} \trianglerighteq \omega \ \text{and} \ \omega \trianglerighteq V_{\omega}$

- ullet An interpretation ${\mathcal I}$ of a structure ${\mathcal N}$ in \mathcal{M} is a collection of formulae which gives an isomorphic copy of \mathcal{N} in \mathcal{M} : one formula for the domain, others for the functions and relations.
- Write $\mathcal{M} \triangleright^{\mathcal{I}} \mathcal{N}$
- $T \triangleright^{\mathcal{I}} U$ on level of theories.
- $\mathcal{M} \trianglerighteq_{par} \mathcal{N}$ means parameters are used.

All these relations are pre-orders.

Examples:

Solid, neat, tight

- $\bullet \mathbb{R} \triangleright \mathbb{C} \text{ but } \mathbb{R} \not \triangleright \mathbb{Z}$
- $V_{\omega} \triangleright \omega$ and $\omega \triangleright V_{\omega}$
- $\mathsf{ZFC}^{\neg \infty} \rhd \mathsf{PA} \text{ and } \mathsf{PA} \rhd \mathsf{ZFC}^{\neg \infty}$

- An interpretation \mathcal{I} of a structure \mathcal{N} in \mathcal{M} is a collection of formulae which gives an isomorphic copy of \mathcal{N} in \mathcal{M} : one formula for the domain, others for the functions and relations.
- Write $\mathcal{M} \trianglerighteq^{\mathcal{I}} \mathcal{N}$
- $T \trianglerighteq^{\mathcal{I}} U$ on level of theories.
- $\mathcal{M} \trianglerighteq_{\mathsf{par}} \mathcal{N}$ means parameters are used.

All these relations are pre-orders.

Examples:

- ullet $\mathbb{R} \trianglerighteq \mathbb{C}$ but $\mathbb{R} \not\trianglerighteq \mathbb{Z}$
- ullet $V_{\omega} \trianglerighteq \omega$ and $\omega \trianglerighteq V_{\omega}$
- $\mathsf{ZFC}^{\neg \infty} \rhd \mathsf{PA} \text{ and } \mathsf{PA} \rhd \mathsf{ZFC}^{\neg \infty}$
- $\bullet \ \mathsf{ZF} \trianglerighteq \mathsf{ZFC} + \mathrm{V} = \mathrm{L}$
- $\bullet \ \mathsf{ZFC} + \mathrm{V} = \mathrm{L} \trianglerighteq \mathsf{ZF}$

- An interpretation \mathcal{I} of a structure \mathcal{N} in \mathcal{M} is a collection of formulae which gives an isomorphic copy of \mathcal{N} in \mathcal{M} : one formula for the domain, others for the functions and relations.
- Write $\mathcal{M} \trianglerighteq^{\mathcal{I}} \mathcal{N}$
- $T \trianglerighteq^{\mathcal{I}} U$ on level of theories.
- $\mathcal{M} \trianglerighteq_{\mathsf{par}} \mathcal{N}$ means parameters are used.

All these relations are pre-orders.

Examples:

- $\bullet \ \ \mathbb{R} \trianglerighteq \mathbb{C} \ \ \mathsf{but} \ \ \mathbb{R} \not \trianglerighteq \mathbb{Z}$
- ullet $V_{\omega} \trianglerighteq \omega$ and $\omega \trianglerighteq V_{\omega}$
- $\mathsf{ZFC}^{\neg \infty} \rhd \mathsf{PA}$ and $\mathsf{PA} \rhd \mathsf{ZFC}^{\neg \infty}$
- $\mathsf{ZF} \trianglerighteq \mathsf{ZFC} + \mathsf{V} = \mathsf{L}$
- $\bullet \ \mathsf{ZFC} + \mathrm{V} = \mathrm{L} \trianglerighteq \mathsf{ZF}$
- $\bullet \ \mathsf{ACA}_0 \trianglerighteq \mathsf{PA} \ \mathsf{but} \ \mathsf{PA} \not\trianglerighteq \mathsf{ACA}_0$
- $RCA_0 \supseteq I\Sigma_1$ but $I\Sigma_1 \not \trianglerighteq RCA_0$

- An interpretation \mathcal{I} of a structure \mathcal{N} in \mathcal{M} is a collection of formulae which gives an isomorphic copy of \mathcal{N} in \mathcal{M} : one formula for the domain, others for the functions and relations.
- Write $\mathcal{M} \trianglerighteq^{\mathcal{I}} \mathcal{N}$
- $T \trianglerighteq^{\mathcal{I}} U$ on level of theories.
- $\mathcal{M} \trianglerighteq_{\mathsf{par}} \mathcal{N}$ means parameters are used.

All these relations are pre-orders.

Examples:

- ullet $\mathbb{R} \trianglerighteq \mathbb{C}$ but $\mathbb{R} \not\trianglerighteq \mathbb{Z}$
- $\bullet \ V_{\omega} \trianglerighteq \omega \ \text{and} \ \omega \trianglerighteq V_{\omega}$
- $\mathsf{ZFC}^{\neg \infty} \trianglerighteq \mathsf{PA} \text{ and } \mathsf{PA} \trianglerighteq \mathsf{ZFC}^{\neg \infty}$
- $\mathsf{ZF} \trianglerighteq \mathsf{ZFC} + \mathsf{V} = \mathsf{L}$
- $\bullet \ \mathsf{ZFC} + \mathrm{V} = \mathrm{L} \trianglerighteq \mathsf{ZF}$
- $\bullet \ \mathsf{ACA}_0 \trianglerighteq \mathsf{PA} \ \mathsf{but} \ \mathsf{PA} \not\trianglerighteq \mathsf{ACA}_0$
- $RCA_0 \supseteq I\Sigma_1$ but $I\Sigma_1 \not \trianglerighteq RCA_0$

Fact: Doing $ZFC^{-\infty} \supseteq PA$ then $PA \supseteq ZFC^{-\infty}$ or vice versa gives an isomorphism.

But that's not true for doing $ZF \supseteq ZFC + V = L$ then $ZFC + V = L \supseteq ZF$.

U is a retract of T if

• $U \trianglerighteq^{\mathcal{I}} T \trianglerighteq^{\mathcal{J}} U$ and $\mathcal{J} \circ \mathcal{I}$ is definably isomorphic to the identity interpretation on U.

 $\bullet \ \mathcal{M} \trianglerighteq^{\mathcal{I}} \mathcal{N} \trianglerighteq^{\mathcal{J}} \mathcal{M}^* \Longrightarrow \mathcal{M} \cong^{\mathcal{J} \circ \mathcal{I}} \mathcal{M}^*$

6 / 20

U is a retract of T if

• $U \trianglerighteq^{\mathcal{I}} T \trianglerighteq^{\mathcal{J}} U$ and $\mathcal{J} \circ \mathcal{I}$ is definably isomorphic to the identity interpretation on U.

U and T are bi-interpretable if

 They are retracts of each other via the same interpretations.

$$\bullet \ \mathcal{M} \trianglerighteq^{\mathcal{I}} \mathcal{N} \trianglerighteq^{\mathcal{J}} \mathcal{M}^* \Longrightarrow \mathcal{M} \cong^{\mathcal{J} \circ \mathcal{I}} \mathcal{M}^*$$

 $\begin{array}{c} \bullet \ \ \mathcal{M} \trianglerighteq^{\mathcal{I}} \ \mathcal{N} \trianglerighteq^{\mathcal{J}} \ \mathcal{M}^* \Longrightarrow \mathcal{M} \cong^{\mathcal{J} \circ \mathcal{I}} \ \mathcal{M}^* \\ \text{and} \\ \ \mathcal{N} \trianglerighteq^{\mathcal{J}} \ \mathcal{M} \trianglerighteq^{\mathcal{I}} \ \mathcal{N}^* \Longrightarrow \mathcal{N} \cong^{\mathcal{I} \circ \mathcal{J}} \ \mathcal{N}^* \end{array}$

U is a retract of T if

• $U \trianglerighteq^{\mathcal{I}} T \trianglerighteq^{\mathcal{J}} U$ and $\mathcal{J} \circ \mathcal{I}$ is definably isomorphic to the identity interpretation on U.

U and T are bi-interpretable if

 They are retracts of each other via the same interpretations.

Examples:

- ZFC $^{-\infty}$ and PA are bi-interpretable.
- $\mathsf{ZFC} + V = L$ is a retract of ZF .

 $\bullet \ \mathcal{M} \trianglerighteq^{\mathcal{I}} \mathcal{N} \trianglerighteq^{\mathcal{J}} \mathcal{M}^* \Longrightarrow \mathcal{M} \cong^{\mathcal{J} \circ \mathcal{I}} \mathcal{M}^*$

 $\begin{array}{ccc} \bullet & \mathcal{M} \trianglerighteq^{\mathcal{I}} \mathcal{N} \trianglerighteq^{\mathcal{J}} \mathcal{M}^* \Longrightarrow \mathcal{M} \cong^{\mathcal{J} \circ \mathcal{I}} \mathcal{M}^* \\ \text{and} \\ & \mathcal{N} \trianglerighteq^{\mathcal{J}} \mathcal{M} \trianglerighteq^{\mathcal{I}} \mathcal{N}^* \Longrightarrow \mathcal{N} \cong^{\mathcal{I} \circ \mathcal{J}} \mathcal{N}^* \end{array}$

U is a retract of T if

• $U \trianglerighteq^{\mathcal{I}} T \trianglerighteq^{\mathcal{J}} U$ and $\mathcal{J} \circ \mathcal{I}$ is definably isomorphic to the identity interpretation on U.

U and T are bi-interpretable if

 They are retracts of each other via the same interpretations.

$$\bullet \ \mathcal{M} \trianglerighteq^{\mathcal{I}} \mathcal{N} \trianglerighteq^{\mathcal{J}} \mathcal{M}^* \Longrightarrow \mathcal{M} \cong^{\mathcal{J} \circ \mathcal{I}} \mathcal{M}^*$$

 $\bullet \ \mathcal{M} \trianglerighteq^{\mathcal{I}} \mathcal{N} \trianglerighteq^{\mathcal{J}} \mathcal{M}^* \Longrightarrow \mathcal{M} \cong^{\mathcal{J} \circ \mathcal{I}} \mathcal{M}^*$ and $\mathcal{N} \trianglerighteq^{\mathcal{J}} \mathcal{M} \trianglerighteq^{\mathcal{I}} \mathcal{N}^* \Longrightarrow \mathcal{N} \cong^{\mathcal{I} \circ \mathcal{J}} \mathcal{N}^*$

Examples:

- ZFC $^{-\infty}$ and PA are bi-interpretable.
- $\mathsf{ZFC} + \mathsf{V} = \mathsf{L}$ is a retract of ZF .
- But ZF and ZFC + V = L are not bi-interpretable (Enayat).

"Every model of arithmetic which ω can see is isomorphic to it."

Question

If $\omega \trianglerighteq \mathcal{N}$ must $\omega \cong \mathcal{N}$?

7 / 20

"Every model of arithmetic which ω can see is isomorphic to it."

Question

If
$$\omega \trianglerighteq \mathcal{N}$$
 must $\omega \cong \mathcal{N}$?

This is still badly false!

• If $T \supseteq PA$ is consistent and arithmetical then ω interprets a model of T.

"Every model of arithmetic which ω can see is isomorphic to it."

Question

If
$$\omega \triangleright \mathcal{N}$$
 must $\omega \cong \mathcal{N}$?

This is still badly false!

• If $T \supseteq PA$ is consistent and arithmetical then ω interprets a model of T.

But we avoid loops:

• If $\omega \trianglerighteq_{\mathsf{par}} \mathcal{N} \trianglerighteq_{\mathsf{par}} \omega$ then $\mathcal{N} \cong \omega$. (Because a model of arithmetic cannot interpret a shorter model.)

◆ロト ◆卸 → ◆重 ト ◆ 重 ・ 夕 ○ ○

Solidity

A theory T is solid if

- ullet For all models $\mathcal{M}, \mathcal{M}^*, \mathcal{N}$ of T
 - ullet If $\mathcal{M} \sides_{\mathsf{par}} \mathcal{N} \sides_{\mathsf{par}} \mathcal{M}^*$ and
 - There is a parametrically definable isomorphism $\mathcal{M} \cong \mathcal{M}^*$,
 - Then there is a parametrically definable isomorphism $\mathcal{M} \cong \mathcal{N}$.

8 / 20

Solidity

A theory *T* is solid if

- ullet For all models $\mathcal{M}, \mathcal{M}^*, \mathcal{N}$ of T
 - If $\mathcal{M} \trianglerighteq_{\mathsf{par}} \mathcal{N} \trianglerighteq_{\mathsf{par}} \mathcal{M}^*$ and
 - There is a parametrically definable isomorphism $\mathcal{M} \cong \mathcal{M}^*$,
 - Then there is a parametrically definable isomorphism $\mathcal{M} \cong \mathcal{N}$.

Example:

(Visser) PA is solid.

Because the " $\omega \trianglerighteq \mathcal{N} \trianglerighteq \omega$ implies $\mathcal{N} \cong \omega$ " argument can be made to work over any $\mathcal{M} \models \mathsf{PA}$.

T is neat if

- Given two extensions U, V of T, if U is a retract of V then $U \supseteq V$.
- $\bullet \ \mathcal{M} \trianglerighteq^{\mathcal{I}} \mathcal{N} \trianglerighteq^{\mathcal{J}} \mathcal{M}^* \Longrightarrow \mathcal{M} \cong^{\mathcal{J} \circ \mathcal{I}} \mathcal{M}^*$

9 / 20

T is neat if

- Given two extensions U, V of T, if U is a retract of V then $U \supset V$.
- $\bullet \ \mathcal{M} \trianglerighteq^{\mathcal{I}} \mathcal{N} \trianglerighteq^{\mathcal{J}} \mathcal{M}^* \Longrightarrow \mathcal{M} \cong^{\mathcal{J} \circ \mathcal{I}} \mathcal{M}^*$

T is tight if

• Given two extensions U, V of T, if U and V are bi-interpretable then U = V.

(U and V must be in the same language as T, to avoid boring counterexamples.)

T is neat if

- Given two extensions U, V of T, if U is a retract of V then $U \supseteq V$.
- $\bullet \ \mathcal{M} \trianglerighteq^{\mathcal{I}} \mathcal{N} \trianglerighteq^{\mathcal{J}} \mathcal{M}^* \Longrightarrow \mathcal{M} \cong^{\mathcal{J} \circ \mathcal{I}} \mathcal{M}^*$

T is tight if

• Given two extensions U, V of T, if U and V are bi-interpretable then U = V.

(U and V must be in the same language as T, to avoid boring counterexamples.)

- Solidity implies neatness and neatness implies tightness.
- But the converses do not hold.

T is neat if

- Given two extensions U, V of T, if U is a retract of V then $U \supseteq V$.
- $\bullet \ \mathcal{M} \trianglerighteq^{\mathcal{I}} \mathcal{N} \trianglerighteq^{\mathcal{J}} \mathcal{M}^* \Longrightarrow \mathcal{M} \cong^{\mathcal{J} \circ \mathcal{I}} \mathcal{M}^*$

T is tight if

• Given two extensions U, V of T, if U and V are bi-interpretable then U = V.

(U and V must be in the same language as T, to avoid boring counterexamples.)

- Solidity implies neatness and neatness implies tightness.
- But the converses do not hold.
- All of these properties are preserved by bi-interpretations.
- All of these properties are preserved by adding axioms (in the same language).

T is neat if

- Given two extensions U, V of T, if U is a retract of V then $U \supset V$.
- $\bullet \ \mathcal{M} \trianglerighteq^{\mathcal{I}} \mathcal{N} \trianglerighteq^{\mathcal{J}} \mathcal{M}^* \Longrightarrow \mathcal{M} \cong^{\mathcal{J} \circ \mathcal{I}} \mathcal{M}^*$

T is tight if

• Given two extensions U, V of T, if U and V are bi-interpretable then U = V.

(U and V must be in the same language as T, to avoid boring counterexamples.)

- Solidity implies neatness and neatness implies tightness.
- But the converses do not hold.
- All of these properties are preserved by bi-interpretations.
- All of these properties are preserved by adding axioms (in the same language).
- These properties are really only interesting for sequential theories—those which are subject to the first incompleteness theorem.
- A complete theory such as ACF₀ is trivially neat.

Positive examples

Theorem

The following theories are all solid, and hence also neat and tight.

- (Visser) PA
- (Enayat) ZF
- \bullet (Enayat) Z_2 , second-order arithmetic with full comprehension
- (Enayat) KM, class theory with full comprehension

10 / 20

Positive examples

Theorem

The following theories are all solid, and hence also neat and tight.

- (Visser) PA
- (Enayat) ZF
- (Enayat) Z_2 , second-order arithmetic with full comprehension
- (Enayat) KM, class theory with full comprehension

Question (Enayat): Do we need the full strength of these theories to get these quasi-categoricity properties?

Negative examples

Theorem

None of the following are tight, and hence are neither neat nor solid.

- (Freire-Hamkins) Zermelo set theory
- (Freire–Hamkins) ZF⁻, set theory without Powerset
- (Enayat) Finite subtheories of PA, ZF, Z₂, or KM
- (Freire–W.) ACA and Π_k^1 -CA, i.e. with full induction, and the analogous subtheories of KM

These results suggest that tightness characterizes the important foundational theories like PA and ZF.

A break for some motivation

A break for some motivation

"Why should I, someone who's not interested in interpretations nor quasi-categoricity, care about any of this?"

A break for some motivation

"Why should I, someone who's not interested in interpretations nor quasi-categoricity, care about any of this?"

- The constructions used are flexible.
- They should apply to more than just mucking about with bi-interpretations.

12 / 20

A break for some motivation

"Why should I, someone who's not interested in interpretations nor quasi-categoricity, care about any of this?"

- The constructions used are flexible.
- They should apply to more than just mucking about with bi-interpretations.

To that end, let me sketch the construction for one result, in enough detail to give you an idea how it might be bent into a new shape.

12 / 20

A break for some motivation

"Why should I, someone who's not interested in interpretations nor quasi-categoricity, care about any of this?"

- The constructions used are flexible.
- They should apply to more than just mucking about with bi-interpretations.

To that end, let me sketch the construction for one result, in enough detail to give you an idea how it might be bent into a new shape.

Theorem

ACA is not tight: there are distinct but bi-interpretable extensions of ACA.

12 / 20

• (Tarski) $0^{(\omega)}$ is not arithmetical.

- (Tarski) $0^{(\omega)}$ is not arithmetical.
- (Mostowski) But it is definable over the arithmetical sets.

13 / 20

- (Tarski) $0^{(\omega)}$ is not arithmetical.
- (Mostowski) But it is definable over the arithmetical sets.

- For each $k \in \omega$, the k-th jump $0^{(k)}$ is arithmetical.
- So we can define $0^{(\omega)}$ by identifying which sets are the $0^{(k)}$ then gluing them together.
- Key point: The $0^{(k)}$ are not uniformly arithmetical, but the property of being a $0^{(k)}$ is uniformly recognizable.

13 / 20

- (Tarski) $0^{(\omega)}$ is not arithmetical.
- (Mostowski) But it is definable over the arithmetical sets.
- Indeed, it has a definition absolute between all ω -models of ACA (= Turing ideals closed under jump = $\mathcal{X} \subseteq \mathcal{P}(\omega)$ closed under arithmetical comprehension).
- Thus, any ω -model of ACA can definably identify which of its sets are arithmetical.

- For each $k \in \omega$, the k-th jump $0^{(k)}$ is arithmetical.
- So we can define $0^{(\omega)}$ by identifying which sets are the $0^{(k)}$ then gluing them together.
- Key point: The $0^{(k)}$ are not *uniformly* arithmetical, but the property of being a $0^{(k)}$ is uniformly recognizable.

- (Tarski) $0^{(\omega)}$ is not arithmetical.
- (Mostowski) But it is definable over the arithmetical sets.
- Indeed, it has a definition absolute between all ω -models of ACA (= Turing ideals closed under jump = $\mathcal{X} \subseteq \mathcal{P}(\omega)$ closed under arithmetical comprehension).
- ullet Thus, any $\omega ext{-model}$ of ACA can definably identify which of its sets are arithmetical.

- For each $k \in \omega$, the k-th jump $0^{(k)}$ is arithmetical.
- So we can define $0^{(\omega)}$ by identifying which sets are the $0^{(k)}$ then gluing them together.
- Key point: The $0^{(k)}$ are not uniformly arithmetical, but the property of being a $0^{(k)}$ is uniformly recognizable.
- We just saw a Σ^1_1 definition. There's also a Π^1_1 definition.

- We can add a new real by finite approximations.
- \mathbb{C} is the poset consisting of finite partial functions $\omega \to 2$, ordered by extension.
- A real $c \subseteq \omega$ is generic over a Turing ideal \mathcal{X} if it get below every dense set in \mathcal{X} .
- (Rasiowa–Sikorski) If \mathcal{X} is countable you can always find a generic.

- We can add a new real by finite approximations.
- \mathbb{C} is the poset consisting of finite partial functions $\omega \to 2$, ordered by extension.
- A real $c \subseteq \omega$ is generic over a Turing ideal \mathcal{X} if it get below every dense set in \mathcal{X} .
- (Rasiowa–Sikorski) If \mathcal{X} is countable you can always find a generic.
- $\mathcal{X}[c]$ satisfies ACA if \mathcal{X} satisfies ACA.

- We can add a new real by finite approximations.
- \mathbb{C} is the poset consisting of finite partial functions $\omega \to 2$, ordered by extension.
- A real $c \subseteq \omega$ is generic over a Turing ideal \mathcal{X} if it get below every dense set in \mathcal{X} .
- (Rasiowa–Sikorski) If \mathcal{X} is countable you can always find a generic.
- $\mathcal{X}[c]$ satisfies ACA if \mathcal{X} satisfies ACA.

Fact: Forcing is a computable process, given sufficient data. If you have uniform access to finite jumps of reals in \mathcal{X} you can compute a generic over \mathcal{X} .

- We can add a new real by finite approximations.
- \mathbb{C} is the poset consisting of finite partial functions $\omega \to 2$, ordered by extension.
- A real $c \subseteq \omega$ is generic over a Turing ideal \mathcal{X} if it get below every dense set in \mathcal{X} .
- (Rasiowa–Sikorski) If \mathcal{X} is countable you can always find a generic.
- $\mathcal{X}[c]$ satisfies ACA if \mathcal{X} satisfies ACA.

Fact: Forcing is a computable process, given sufficient data. If you have uniform access to finite jumps of reals in \mathcal{X} you can compute a generic over \mathcal{X} .

- Given $0^{(\omega)}$ you can compute a generic over the arithmetical sets.
- Since $0^{(\omega)}$ is Δ^1_1 -definable over any ω -model of ACA we get that any ω -model of ACA can define a generic over the arithmetical sets.

- We can add a new real by finite approximations.
- \mathbb{C} is the poset consisting of finite partial functions $\omega \to 2$, ordered by extension.
- A real $c \subseteq \omega$ is generic over a Turing ideal \mathcal{X} if it get below every dense set in \mathcal{X} .
- (Rasiowa–Sikorski) If \mathcal{X} is countable you can always find a generic.
- $\mathcal{X}[c]$ satisfies ACA if \mathcal{X} satisfies ACA.

Fact: Forcing is a computable process, given sufficient data. If you have uniform access to finite jumps of reals in \mathcal{X} you can compute a generic over \mathcal{X} .

- Given $0^{(\omega)}$ you can compute a generic over the arithmetical sets.
- Since $0^{(\omega)}$ is Δ^1_1 -definable over any ω -model of ACA we get that any ω -model of ACA can define a generic over the arithmetical sets.
- Indeed, they can all define the same generic, call it c.

Two structures:

$$(\omega, \mathcal{A})$$
 and $(\omega, \mathcal{A}[c])$

 $\ensuremath{\mathcal{A}}$ is the arithmetical sets.

Two structures:

$$(\omega, A)$$
 and $(\omega, A[c])$

 \mathcal{A} is the arithmetical sets.

- The two structures interpret each other.
- Indeed, it's a bi-interpretation.

Two structures:

$$(\omega, \mathcal{A})$$
 and $(\omega, \mathcal{A}[c])$

 \mathcal{A} is the arithmetical sets.

- The two structures interpret each other.
- Indeed, it's a bi-interpretation.

And they have different theories:

- A thinks its elements are exactly the arithmetical sets
- $\mathcal{A}[c]$ thinks its elements are exactly the sets arithmetical in c

NERDS 25.0 (2024 Mar 23)

Two structures:

$$(\omega, A)$$
 and $(\omega, A[c])$

All this can be done on the level of theories.

 \mathcal{A} is the arithmetical sets.

- The two structures interpret each other.
- Indeed, it's a bi-interpretation.

And they have different theories:

- A thinks its elements are exactly the arithmetical sets
- $\mathcal{A}[c]$ thinks its elements are exactly the sets arithmetical in c

Two structures:

$$(\omega, \mathcal{A})$$
 and $(\omega, \mathcal{A}[c])$

 \mathcal{A} is the arithmetical sets.

- The two structures interpret each other.
- Indeed, it's a bi-interpretation.

And they have different theories:

- A thinks its elements are exactly the arithmetical sets
- $\mathcal{A}[c]$ thinks its elements are exactly the sets arithmetical in c

All this can be done on the level of theories.

- ACA has full induction, which makes the arguments about defining $0^{(\omega)}$ and c work, even over an ω -nonstandard model.
- The definitions are sufficiently absolute to enable a bi-interpretation:
 - ullet ACA + "I am the arithmetical sets" and
 - ullet ACA + "I am the sets arithmetical in c".

Thus, ACA is not tight.

Abstractly, these are the ingredients we need:

- A canonical structure;
- How to extend this structure;
- Everything to be sufficiently absolute;
- This can be done on the level of theories.

16 / 20

Abstractly, these are the ingredients we need:

- A canonical structure;
- How to extend this structure;
- Everything to be sufficiently absolute;
- This can be done on the level of theories.

For ACA:

- The arithmetical sets;
- Cohen forcing;
- The absoluteness of $0^{(\omega)}$;
- Given by the induction schema.

Abstractly, these are the ingredients we need:

- A canonical structure;
- How to extend this structure;
- Everything to be sufficiently absolute;
- This can be done on the level of theories.

16 / 20

Abstractly, these are the ingredients we need:

- A canonical structure;
- How to extend this structure;
- Everything to be sufficiently absolute;
- This can be done on the level of theories.

Can be done for Π_k^1 -CA:

- The minimum β -model of Π_k^1 -CA;
- Cohen forcing;
- The absoluteness of L;
- A little fine structure theory.

16 / 20

Abstractly, these are the ingredients we need:

- A canonical structure;
- How to extend this structure;
- Everything to be sufficiently absolute;
- This can be done on the level of theories.

Abstractly, these are the ingredients we need:

- A canonical structure;
- How to extend this structure;
- Everything to be sufficiently absolute;
- This can be done on the level of theories.

For class theories $T \subseteq KM$:

- Minimum models again;
- Cohen forcing again;
- L again;
- Fine structure theory again.

16 / 20

Abstractly, these are the ingredients we need:

- A canonical structure;
- How to extend this structure;
- Everything to be sufficiently absolute;
- This can be done on the level of theories.

16 / 20

Abstractly, these are the ingredients we need:

- A canonical structure;
- How to extend this structure;
- Everything to be sufficiently absolute;
- This can be done on the level of theories.

Other uses?

- Maybe only need the first three?
- Or just two of them?

Conjecture (Enayat)

A theory T of arithmetic is tight if and only if $T \supseteq PA$. And similarly for ZF and other important foundational theories.

17 / 20

Conjecture (Enayat)

A theory T of arithmetic is tight if and only if $T \supseteq PA$. And similarly for ZF and other important foundational theories.

What makes the construction for the non-tightness of ACA work was:

The arithmetical sets lack semantic closure.
 Over them you can define sets which are not arithmetical.

Conjecture (Enayat)

A theory T of arithmetic is tight if and only if $T \supseteq PA$. And similarly for ZF and other important foundational theories.

What makes the construction for the non-tightness of ACA work was:

The arithmetical sets lack semantic closure.
 Over them you can define sets which are not arithmetical.

Constructions for other negative results have a similar flavor.

Conjecture (Enayat)

A theory T of arithmetic is tight if and only if $T \supseteq PA$. And similarly for ZF and other important foundational theories.

What makes the construction for the non-tightness of ACA work was:

The arithmetical sets lack semantic closure.
 Over them you can define sets which are not arithmetical.

Constructions for other negative results have a similar flavor.

A moral: These categoricity-like properties are characterizing semantic closure.

Some open questions

- Is there a finitely axiomatizable sequential tight theory?
 (Enayat) No for subtheories of PA and ZF.
- Is PA⁻ + Collection tight? (Enayat-Łełyk) It is not solid.
- Is there an extension of KP which is solid?

18 / 20

Thank you!

References

- Ali Enayat, "Variations on a Visserian theme", In: Liber Amicorum Alberti, a Tribute to Albert Visser (2016).
 Preprint: arXiv:1702.07093 [math.LO].
- Ali Enayat and Mateusz Łełyk, "Categoricity-like properties in the first-order realm", under review.
 Preprint: https://www.researchgate.net/publication/377931753
- Alfredo Roque Freire and Kameryn J. Williams, "Non-tightness in class theory and second-order arithmetic", JSL (2023).
 Preprint: arXiv:2212.04445 [math.LO].
- Albert Visser, "Categories of theories and interpretations", In: Logic in Tehran (2006).