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Categoricity in second-order logic

Second-order logic allows quantifiers over
subsets of the domain, not just elements.

(Dedekind) ω is the unique model of
Peano arithmetic, formulated in
second-order logic.

(Zermelo) The only models of ZF set
theory, formulated in second-order logic,
are Vκ for κ inaccessible.

First-order logic only allows quantifiers over
elements. It cannot have such absolute
categoricity results.

(Löwenheim–Skolem) If a theory T has an
infinite model then T has a model of
every infinite cardinality ≥ |T |.

Suppose M |= PA2. We build an isomorphism ω ∼=M:

Map 0 to 0M and recursively map n + 1 to the successor of where you mapped n.

By induction in M the range of this embedding must be all of M.
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Non-categoricity is as bad as possible

Fact

There are continuum many non-isomorphic countable models of Peano
arithmetic.
This remains true if you extend PA to a completion.

If something is impossible, as mathematicians we want to see how
close we can get.

Question

Can we find categoricity-like properties which are enjoyed by the
first-order logic formulations of important foundational theories like PA
or ZF?
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First try: internal categoricity

“Every model of arithmetic which ω can see is isomorphic to it.”

To say what this means we need the notion of an interpretation.
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Interpretations

An interpretation I of a structure N in
M is a collection of formulae which gives
an isomorphic copy of N in M: one
formula for the domain, others for the
functions and relations.

Write M�I N

T �I U on level of theories.

M�par N means parameters are used.

All these relations are pre-orders.

Examples:

R � C but R 6� Z
Vω � ω and ω � Vω

ZFC¬∞ � PA and PA � ZFC¬∞

ZF � ZFC + V = L

ZFC + V = L � ZF

ACA0 � PA but PA 6� ACA0

RCA0 � IΣ1 but IΣ1 6� RCA0

Fact: Doing ZFC¬∞ � PA then PA � ZFC¬∞ or vice versa gives an isomorphism.

But that’s not true for doing ZF � ZFC + V = L then ZFC + V = L � ZF.
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Bi-interpretations

U is a retract of T if

U �I T �J U and J ◦ I is definably
isomorphic to the identity interpretation
on U.

U and T are bi-interpretable if

They are retracts of each other via the
same interpretations.

M�I N �J M∗ =⇒ M∼=J◦I M∗

M�I N �J M∗ =⇒ M∼=J◦I M∗
and
N �J M�I N ∗ =⇒ N ∼=I◦J N ∗

Examples:

ZFC¬∞ and PA are bi-interpretable.

ZFC + V = L is a retract of ZF.

But ZF and ZFC + V = L are not bi-interpretable (Enayat).
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First try: internal categoricity

“Every model of arithmetic which ω can see is isomorphic to it.”

Question

If ω �N must ω ∼= N ?

This is still badly false!

If T ⊇ PA is consistent and arithmetical then ω interprets a
model of T .

But we avoid loops:

If ω �par N �par ω then N ∼= ω.
(Because a model of arithmetic cannot interpret a shorter model.)
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Solidity

A theory T is solid if

For all models M,M∗,N of T

If M�par N �parM∗ and
There is a parametrically definable
isomorphism M∼=M∗,
Then there is a parametrically definable
isomorphism M∼= N .

Example:

(Visser) PA is solid.

Because the “ω �N � ω implies N ∼= ω”
argument can be made to work over any
M |= PA.
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Neatness and tightness

T is neat if

Given two extensions U,V of T , if U is a
retract of V then U ⊇ V .

M�I N �J M∗ =⇒ M∼=J◦I M∗

T is tight if

Given two extensions U,V of T , if U and
V are bi-interpretable then U = V .

(U and V must be in the same language as T ,
to avoid boring counterexamples.)

Solidity implies neatness and neatness
implies tightness.

But the converses do not hold.

All of these properties are preserved by
bi-interpretations.

All of these properties are preserved by
adding axioms (in the same language).

These properties are really only interesting
for sequential theories—those which are
subject to the first incompleteness
theorem.

A complete theory such as ACF0 is
trivially neat.
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Positive examples

Theorem

The following theories are all solid, and hence also neat and tight.

(Visser) PA

(Enayat) ZF

(Enayat) Z2, second-order arithmetic with full comprehension

(Enayat) KM, class theory with full comprehension

Question (Enayat): Do we need the full strength of these theories to get
these quasi-categoricity properties?
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Negative examples

Theorem

None of the following are tight, and hence are neither neat nor solid.

(Freire–Hamkins) Zermelo set theory

(Freire–Hamkins) ZF−, set theory without Powerset

(Enayat) Finite subtheories of PA, ZF, Z2, or KM

(Freire–W.) ACA and Π1
k -CA, i.e. with full induction, and the

analogous subtheories of KM

These results suggest that tightness characterizes the important
foundational theories like PA and ZF.
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A break for some motivation

“Why should I, someone who’s not interested
in interpretations nor quasi-categoricity, care
about any of this?”

The constructions used are flexible.

They should apply to more than just
mucking about with bi-interpretations.

To that end, let me sketch the construction for one result, in enough detail to give you an idea
how it might be bent into a new shape.

Theorem

ACA is not tight: there are distinct but bi-interpretable
extensions of ACA.
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Identifying the arithmetical sets

(Tarski) 0(ω) is not arithmetical.

(Mostowski) But it is definable over the
arithmetical sets.

Indeed, it has a definition absolute
between all ω-models of ACA (= Turing
ideals closed under jump = X ⊆ P(ω)
closed under arithmetical comprehension).

Thus, any ω-model of ACA can definably
identify which of its sets are arithmetical.

For each k ∈ ω, the k-th jump 0(k) is
arithmetical.

So we can define 0(ω) by identifying which
sets are the 0(k) then gluing them
together.

Key point: The 0(k) are not uniformly
arithmetical, but the property of being a
0(k) is uniformly recognizable.

We just saw a Σ1
1 definition. There’s also

a Π1
1 definition.
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1 definition. There’s also

a Π1
1 definition.
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Forcing over the arithmetical sets

We can add a new real by finite
approximations.

C is the poset consisting of finite partial
functions ω → 2, ordered by extension.

A real c ⊆ ω is generic over a Turing ideal
X if it get below every dense set in X .

(Rasiowa–Sikorski) If X is countable you
can always find a generic.

X [c] satisfies ACA if X satisfies ACA.

Fact: Forcing is a computable process, given
sufficient data. If you have uniform access to
finite jumps of reals in X you can compute a
generic over X .

Given 0(ω) you can compute a generic
over the arithmetical sets.

Since 0(ω) is ∆1
1-definable over any

ω-model of ACA we get that any ω-model
of ACA can define a generic over the
arithmetical sets.

Indeed, they can all define the same
generic, call it c.
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Bi-interpretations

Two structures:

(ω,A) and (ω,A[c])

A is the arithmetical sets.

The two structures interpret each other.

Indeed, it’s a bi-interpretation.

And they have different theories:

A thinks its elements are exactly the
arithmetical sets

A[c] thinks its elements are exactly the
sets arithmetical in c

All this can be done on the level of theories.

ACA has full induction, which makes the
arguments about defining 0(ω) and c work,
even over an ω-nonstandard model.

The definitions are sufficiently absolute to
enable a bi-interpretation:

ACA + “I am the arithmetical sets” and
ACA + “I am the sets arithmetical in c”.

Thus, ACA is not tight.
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Generalizing the construction

Abstractly, these are the ingredients we need:

A canonical structure;

How to extend this structure;

Everything to be sufficiently absolute;

This can be done on the level of theories.

K. Williams (BCSR) Solid, neat, tight NERDS 25.0 (2024 Mar 23) 16 / 20
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Abstractly, these are the ingredients we need:

A canonical structure;

How to extend this structure;

Everything to be sufficiently absolute;

This can be done on the level of theories.

For ACA:

The arithmetical sets;

Cohen forcing;

The absoluteness of 0(ω);

Given by the induction schema.
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Generalizing the construction

Abstractly, these are the ingredients we need:

A canonical structure;

How to extend this structure;

Everything to be sufficiently absolute;

This can be done on the level of theories.

Can be done for Π1
k -CA:

The minimum β-model of Π1
k -CA;

Cohen forcing;

The absoluteness of L;

A little fine structure theory.
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Generalizing the construction

Abstractly, these are the ingredients we need:

A canonical structure;

How to extend this structure;

Everything to be sufficiently absolute;

This can be done on the level of theories.

For class theories T ⊆ KM:

Minimum models again;

Cohen forcing again;

L again;

Fine structure theory again.
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Generalizing the construction

Abstractly, these are the ingredients we need:

A canonical structure;

How to extend this structure;

Everything to be sufficiently absolute;

This can be done on the level of theories.

Other uses?

Maybe only need the first three?

Or just two of them?
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Back to Enayat’s conjecture

Conjecture (Enayat)

A theory T of arithmetic is tight if and only if T ⊇ PA.
And similarly for ZF and other important foundational theories.

What makes the construction for the non-tightness of ACA work was:

The arithmetical sets lack semantic closure.
Over them you can define sets which are not arithmetical.

Constructions for other negative results have a similar flavor.

A moral: These categoricity-like properties are characterizing semantic
closure.
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Some open questions

Is there a finitely axiomatizable sequential tight theory?
(Enayat) No for subtheories of PA and ZF.

Is PA− + Collection tight?
(Enayat –  Le lyk) It is not solid.

Is there an extension of KP which is solid?
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Thank you!
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