Math 321: Countable and uncountable sets

Kameryn J Williams

University of Hawai‘i at Mānoa

Fall 2020
Last time

Recall that a function \(f : A \to B \) is a bijection onto \(B \) if \(f \) is both one-to-one and onto \(B \). That is, \(f \) satisfies the following property:

- For all \(b \in B \) there is a unique \(a \in A \) so that \(f(a) = b \).

We used this notion to give a definition of when two sets have the same size: sets \(A \) and \(B \) are equinumerous if there is a bijection \(f : A \to B \).
Recall that a function $f : A \rightarrow B$ is a bijection onto B if f is both one-to-one and onto B. That is, f satisfies the following property:

- For all $b \in B$ there is a unique $a \in A$ so that $f(a) = b$.

We used this notion to give a definition of when two sets have the same size: sets A and B are equinumerous if there is a bijection $f : A \rightarrow B$.

- For finite sets, this is the same as counting things. We can think of counting the fingers on my hand as building a bijection from $\{1, 2, 3, 4, 5\}$ onto the fingers of my hand.
Last time

Recall that a function $f : A \to B$ is a bijection onto B if f is both one-to-one and onto B. That is, f satisfies the following property:

- For all $b \in B$ there is a unique $a \in A$ so that $f(a) = b$.

We used this notion to give a definition of when two sets have the same size: sets A and B are equinumerous if there is a bijection $f : A \to B$.

- For finite sets, this is the same as counting things. We can think of counting the fingers on my hand as building a bijection from \{1, 2, 3, 4, 5\} onto the fingers of my hand.
- We saw that a lot of familiar infinite sets are equinumerous with each other—\(\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{N}^2, \ldots\).
Last time

Recall that a function \(f : A \rightarrow B \) is a bijection onto \(B \) if \(f \) is both one-to-one and onto \(B \). That is, \(f \) satisfies the following property:

- For all \(b \in B \) there is a unique \(a \in A \) so that \(f(a) = b \).

We used this notion to give a definition of when two sets have the same size: sets \(A \) and \(B \) are equinumerous if there is a bijection \(f : A \rightarrow B \).

- For finite sets, this is the same as counting things. We can think of counting the fingers on my hand as building a bijection from \(\{1, 2, 3, 4, 5\} \) onto the fingers of my hand.

- We saw that a lot of familiar infinite sets are equinumerous with each other—\(\mathbb{N} \), \(\mathbb{Z} \), \(\mathbb{Q} \), \(\mathbb{N}^2 \),

- We ended with a question: are all infinite sets equinumerous?
Last time

Recall that a function \(f : A \rightarrow B \) is a bijection onto \(B \) if \(f \) is both one-to-one and onto \(B \). That is, \(f \) satisfies the following property:

- For all \(b \in B \) there is a unique \(a \in A \) so that \(f(a) = b \).

We used this notion to give a definition of when two sets have the same size: sets \(A \) and \(B \) are equinumerous if there is a bijection \(f : A \rightarrow B \).

- For finite sets, this is the same as counting things. We can think of counting the fingers on my hand as building a bijection from \(\{1, 2, 3, 4, 5\} \) onto the fingers of my hand.

- We saw that a lot of familiar infinite sets are equinumerous with each other—\(\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{N}^2, \ldots \).

- We ended with a question: are all infinite sets equinumerous?

No.
Definitions for cardinality

Last time we saw two definitions about cardinality, letting us compare the sizes of sets.

- $|A| = |B|$ means that there is a bijection $f : A \rightarrow B$.
- $|A| \leq |B|$ means that there is a one-to-one function $f : A \rightarrow B$.
- $|A| < |B|$ means $|A| \leq |B|$ and $|A| \neq |B|$.

A question: If $|A| \leq |B|$ and $|B| \leq |A|$ must it be that $|A| = |B|$?

(Cantor–Schroeder–Bernstein) Yes. The proof of this theorem is reasonably involved. Due to time constraints we have to skip it :(

You can find a proof in section 7.3 of the textbook.

The lesson: if you want to show there is a bijection between A and B, it is enough to find one-to-one functions $A \rightarrow B$ and $B \rightarrow A$.
Definitions for cardinality

Last time we saw two definitions about cardinality, letting us compare the sizes of sets.

- $|A| = |B|$ means that there is a bijection $f : A \rightarrow B$.
- $|A| \leq |B|$ means that there is a one-to-one function $f : A \rightarrow B$.
- $|A| < |B|$ means $|A| \leq |B|$ and $|A| \neq |B|$.

A question:

- If $|A| \leq |B|$ and $|B| \leq |A|$ must it be that $|A| = |B|$?
 (If the answer were no, this wouldn’t be a very good notion of size!)
Definitions for cardinality

Last time we saw two definitions about cardinality, letting us compare the sizes of sets.

- \(|A| = |B|\) means that there is a bijection \(f : A \rightarrow B\).
- \(|A| \leq |B|\) means that there is a one-to-one function \(f : A \rightarrow B\).
- \(|A| < |B|\) means \(|A| \leq |B|\) and \(|A| \neq |B|\).

A question:

- If \(|A| \leq |B|\) and \(|B| \leq |A|\) must it be that \(|A| = |B|\)?
 (If the answer were no, this wouldn’t be a very good notion of size!)
- (Cantor–Schroeder–Bernstein) Yes.
Definitions for cardinality

Last time we saw two definitions about cardinality, letting us compare the sizes of sets.

- \(|A| = |B|\) means that there is a bijection \(f : A \to B\).
- \(|A| \leq |B|\) means that there is a one-to-one function \(f : A \to B\).
- \(|A| < |B|\) means \(|A| \leq |B|\) and \(|A| \neq |B|\).

A question:

- If \(|A| \leq |B|\) and \(|B| \leq |A|\) must it be that \(|A| = |B|\)?
 (If the answer were no, this wouldn’t be a very good notion of size!)

 (Cantor–Schroeder–Bernstein) Yes.

 The proof of this theorem is reasonably involved. Due to time constraints we have to skip it :(.

 You can find a proof in section 7.3 of the textbook.
Definitions for cardinality

Last time we saw two definitions about cardinality, letting us compare the sizes of sets.

- $|A| = |B|$ means that there is a bijection $f : A \rightarrow B$.
- $|A| \leq |B|$ means that there is a one-to-one function $f : A \rightarrow B$.
- $|A| < |B|$ means $|A| \leq |B|$ and $|A| \neq |B|$.

A question:

- If $|A| \leq |B|$ and $|B| \leq |A|$ must it be that $|A| = |B|$?
 (If the answer were no, this wouldn’t be a very good notion of size!)
- (Cantor–Schroeder–Bernstein) Yes.
 The proof of this theorem is reasonably involved. Due to time constraints we have to skip it :(
 You can find a proof in section 7.3 of the textbook.
- The lesson: if you want to show there is a bijection between A and B it is enough to find one-to-one functions $A \rightarrow B$ and $B \rightarrow A$.
An example

The intervals $(0, 1)$ and $[0, 1]$ have the same cardinality.
An example

The intervals $(0, 1)$ and $[0, 1]$ have the same cardinality. More generally, any two nondegenerate intervals have the same cardinality.
Say that a set A is **countable** if $|A| \leq |\mathbb{N}|$. That is, A is countable if there is a one-to-one function $f : A \to \mathbb{N}$.

Every finite set is countable.

We say **countably infinite** to distinguish countable, infinite sets from finite sets.

If A is not countable we call it **uncountable**.
Proposition

Suppose A is uncountable. Then $|\mathbb{N}| < |A|$.

Proof.

By definition of being uncountable, there is no injection $A \to \mathbb{N}$ and so $|\mathbb{N}| \neq |A|$. So we just have to find an injection $f: \mathbb{N} \to A$. We will build f by induction on \mathbb{N}.

(base case) Since A is nonempty, we simply pick any element of A to assign to be $f(0)$.

(induction step) We have already defined $f(0), \ldots, f(n)$. It cannot be that $A = \{f(0), \ldots, f(n)\}$, as if that were the case we would have that A is finite and hence countable, whereas we know A is uncountable. In other words, $A \setminus \{f(0), \ldots, f(n)\}$ is nonempty. So pick some element of this set to assign to be $f(n+1)$.

We can always continue, so we have a one-to-one function $f: \mathbb{N} \to A$.

K Williams (U. Hawai’i @ Mānoa)
Proposition

Suppose A is uncountable. Then $|\mathbb{N}| < |A|$.

Proof.

By definition of being uncountable, there is no injection $A \rightarrow \mathbb{N}$ and so $|\mathbb{N}| \neq |A|$. So we just have to find an injection $f : \mathbb{N} \rightarrow A$. We will build f by induction on \mathbb{N}.
Uncountable sets are larger than countable sets

Proposition

Suppose A is uncountable. Then $|\mathbb{N}| < |A|$.

Proof.

By definition of being uncountable, there is no injection $A \to \mathbb{N}$ and so $|\mathbb{N}| \neq |A|$. So we just have to find an injection $f : \mathbb{N} \to A$. We will build f by induction on \mathbb{N}.

(base case) Since A is nonempty, we simply pick any element of A to assign to be $f(0)$.
Uncountable sets are larger than countable sets

Proposition

Suppose A is uncountable. Then $|\mathbb{N}| < |A|$.

Proof.

By definition of being uncountable, there is no injection $A \rightarrow \mathbb{N}$ and so $|\mathbb{N}| \neq |A|$. So we just have to find an injection $f : \mathbb{N} \rightarrow A$. We will build f by induction on \mathbb{N}.

(base case) Since A is nonempty, we simply pick any element of A to assign to be $f(0)$.

(induction step) We have already defined $f(0), \ldots, f(n)$. It cannot be that $A = \{f(0), \ldots, f(n)\}$, as if that were the case we would have that A is finite and hence countable, whereas we know A is uncountable. In other words, $A \setminus \{f(0), \ldots, f(n)\}$ is nonempty. So pick some element of this set to assign to be $f(n + 1)$.

Proposition

Suppose A is uncountable. Then $|\mathbb{N}| < |A|$.

Proof.

By definition of being uncountable, there is no injection $A \rightarrow \mathbb{N}$ and so $|\mathbb{N}| \neq |A|$. So we just have to find an injection $f : \mathbb{N} \rightarrow A$. We will build f by induction on \mathbb{N}.

(base case) Since A is nonempty, we simply pick any element of A to assign to be $f(0)$.

(induction step) We have already defined $f(0), \ldots, f(n)$. It cannot be that $A = \{f(0), \ldots, f(n)\}$, as if that were the case we would have that A is finite and hence countable, whereas we know A is uncountable. In other words, $A \setminus \{f(0), \ldots, f(n)\}$ is nonempty. So pick some element of this set to assign to be $f(n + 1)$.

We can always continue, so we have a one-to-one function $f : \mathbb{N} \rightarrow A$.
\qed
Theorem (Cantor)

\(\mathbb{R} \) is uncountable.
Theorem (Cantor)

\(\mathbb{R} \) is uncountable.

We have to show there is no one-to-one function \(f : \mathbb{R} \rightarrow \mathbb{N} \), which we do by contradiction.
An application of this fact

You might ask: how is any of this useful?

The answer is that you can use this fact to prove theorems. If you show that $A \subseteq \mathbb{R}$ is a countable subset of the reals, then you can conclude that there are reals not in A. (More generally, if $A \subseteq B$ and $|A| < |B|$ then $B \setminus A$ is nonempty.)

For example, say that a real number is algebraic if it is a root of a polynomial with rational coefficients. If a real number is not algebraic we call it transcendental. For example, $\sqrt{2}$ is algebraic, as seen by the polynomial $x^2 - 2$. This is a nontrivial result to prove, but π is transcendental. Showing a particular number is transcendental is quite hard, but you can show that transcendental numbers exist by showing that the set of algebraic numbers is countable. (This is one of the final exam problems.) In fact, Cantor originally proved that \mathbb{R} is uncountable as a lemma in a new proof for the existence of transcendental numbers.
An application of this fact

You might ask: how is any of this useful?

- The answer is that you can use this fact to prove theorems.
- If you show that $A \subseteq \mathbb{R}$ is a countable subset of the reals, then you can conclude that there are reals not in A.
- (More generally, if $A \subseteq B$ and $|A| < |B|$ then $B \setminus A$ is nonempty.)

For example, say that a real number is algebraic if it is a root of a polynomial with rational coefficients. If a real number is not algebraic we call it transcendental.

For example, $\sqrt{2}$ is algebraic, as seen by the polynomial $x^2 - 2$.

This is a nontrivial result to prove, but π is transcendental.

Showing a particular number is transcendental is quite hard, but you can show that transcendental numbers exist by showing that the set of algebraic numbers is countable. (This is one of the final exam problems.) In fact, Cantor originally proved that \mathbb{R} is uncountable as a lemma in a new proof for the existence of transcendental numbers.
An application of this fact

You might ask: how is any of this useful?

- The answer is that you can use this fact to prove theorems.
- If you show that \(A \subseteq \mathbb{R} \) is a countable subset of the reals, then you can conclude that there are reals not in \(A \).
- (More generally, if \(A \subseteq B \) and \(|A| < |B| \) then \(B \setminus A \) is nonempty.)
- For example, say that a real number is algebraic if it is a root of a polynomial with rational coefficients. If a real number is not algebraic we call it transcendental.
 - For example, \(\sqrt{2} \) is algebraic, as seen by the polynomial \(x^2 - 2 \).
 - This is a nontrivial result to prove, but \(\pi \) is transcendental.
- Showing a particular number is transcendental is quite hard, but you can show that transcendental numbers exist by showing that the set of algebraic numbers is countable. (This is one of the final exam problems.) In fact, Cantor originally proved that \(\mathbb{R} \) is uncountable as a lemma in a new proof for the existence of transcendental numbers.
Theorem (Cantor)

\(\mathcal{P}(\mathbb{N})\) is uncountable. More generally, if \(A\) is any set then \(|A| < |\mathcal{P}(A)|\).

Proof.

We can see that \(|A| \leq |\mathcal{P}(A)|\) by looking at the one-to-one function \(s : A \rightarrow \mathcal{P}(A)\) defined as \(s(a) = \{a\}\). So we just have to see that there is no bijection \(f : A \rightarrow \mathcal{P}(A)\), which we do by contradiction.
\(\mathcal{P}(\mathbb{N}) \) is uncountable

Theorem (Cantor)

\(\mathcal{P}(\mathbb{N}) \) is uncountable. More generally, if \(A \) is any set then \(|A| < |\mathcal{P}(A)| \).

Proof.

We can see that \(|A| \leq |\mathcal{P}(A)| \) by looking at the one-to-one function \(s: A \to \mathcal{P}(A) \) defined as \(s(a) = \{a\} \). So we just have to see that there is no bijection \(f: A \to \mathcal{P}(A) \), which we do by contradiction.

Suppose \(f: A \to \mathcal{P}(A) \) is a bijection. Consider \(D = \{a \in A : a \notin f(a)\} \), a subset of \(A \). Since \(f \) is a bijection, there is \(d \in A \) so that \(f(d) = D \). Let’s now consider two cases.
\(\mathcal{P}(\mathbb{N})\) is uncountable

Theorem (Cantor)

\(\mathcal{P}(\mathbb{N})\) is uncountable. More generally, if \(A\) is any set then \(|A| < |\mathcal{P}(A)|\).

Proof.

We can see that \(|A| \leq |\mathcal{P}(A)|\) by looking at the one-to-one function \(s : A \rightarrow \mathcal{P}(A)\) defined as \(s(a) = \{a\}\). So we just have to see that there is no bijection \(f : A \rightarrow \mathcal{P}(A)\), which we do by contradiction.

Suppose \(f : A \rightarrow \mathcal{P}(A)\) is a bijection. Consider \(D = \{a \in A : a \notin f(a)\}\), a subset of \(A\). Since \(f\) is a bijection, there is \(d \in A\) so that \(f(d) = D\). Let’s now consider two cases.

(Case 1: \(d \in D\)) By definition of \(D\), we get that \(d \notin f(d) = D\), a contradiction.

(Case 2: \(d \notin D\)) By definition of \(D\), we get that \(d \in f(d) = D\), a contradiction.

Either way we get a contradiction, so there can be no such bijection \(f\).
$\mathcal{P}(\mathbb{N})$ is uncountable

Theorem (Cantor)

$\mathcal{P}(\mathbb{N})$ is uncountable. More generally, if A is any set then $|A| < |\mathcal{P}(A)|$.

Proof.

We can see that $|A| \leq |\mathcal{P}(A)|$ by looking at the one-to-one function $s : A \to \mathcal{P}(A)$ defined as $s(a) = \{a\}$. So we just have to see that there is no bijection $f : A \to \mathcal{P}(A)$, which we do by contradiction.

Suppose $f : A \to \mathcal{P}(A)$ is a bijection. Consider $D = \{a \in A : a \notin f(a)\}$, a subset of A. Since f is a bijection, there is $d \in A$ so that $f(d) = D$. Let’s now consider two cases.

(Case 1: $d \in D$) By definition of D, we get that $d \notin f(d) = D$, a contradiction.

(Case 2: $d \notin D$) By definition of D, we get that $d \in f(d) = D$, a contradiction.

Either way we get a contradiction, so there can be no such bijection f. \qed
The following sets all have the same cardinality:

- \(\mathbb{R} \);
- Any nondegenerate interval \((a, b), [a, b], (a, b], \text{ or } [b, a)\);
- \(\mathcal{P}(\mathbb{N}) \).
Cardinalities of infinite sets

- Sets are linearly ordered by cardinality: for two sets A and B, either $|A| < |B|$, $|A| = |B|$, or $|A| > |B|$.
- Moreover, sets are well-ordered by cardinality. In particular, if you have an infinite set A there is a smallest cardinality $>|A|$.

We use \aleph_0 (the Hebrew letter aleph) for the smallest cardinality of an infinite set. That is, $\aleph_0 = |\mathbb{N}|$. And \aleph_{n+1} is the smallest cardinality $>|\aleph_n|$. And we can continue this upward transfinitely, beyond just the finite indices.

So we have an infinite sequence for the infinite cardinalities: \aleph_0, \aleph_1, \aleph_2, ...
Sets are linearly ordered by cardinality: for two sets \(A \) and \(B \), either \(|A| < |B| \), \(|A| = |B| \), or \(|A| > |B| \).

Moreover, sets are well-ordered by cardinality. In particular, if you have an infinite set \(A \) there is a smallest cardinality \(> |A| \).

We use \(\aleph_0 \) (the Hebrew letter aleph) for the smallest cardinality of an infinite set. That is, \(\aleph_0 = |\mathbb{N}| \).

And \(\aleph_{n+1} \) is the smallest cardinality \(> \aleph_n \). And we can continue this upward transfinitely, beyond just the finite indices.

So we have an infinite sequence for the infinite cardinalities:

\[\aleph_0, \aleph_1, \aleph_2, \ldots \]
Cardinalities of infinite sets

- Sets are linearly ordered by cardinality: for two sets A and B, either $|A| < |B|$, $|A| = |B|$, or $|A| > |B|$.

- Moreover, sets are well-ordered by cardinality. In particular, if you have an infinite set A there is a smallest cardinality $> |A|$.

- We use \aleph_0 (the Hebrew letter aleph) for the smallest cardinality of an infinite set. That is, $\aleph_0 = |\mathbb{N}|$.

- And \aleph_{n+1} is the smallest cardinality $> \aleph_n$. And we can continue this upward transfinitely, beyond just the finite indices.

- So we have an infinite sequence for the infinite cardinalities:

 $$\aleph_0, \aleph_1, \aleph_2, \ldots$$

- Given a set A, we write $2^{|A|}$ for $|\mathcal{P}(A)|$.
On the most recent homework, you were asked to calculate, for finite sets A and B, the cardinality of the set of functions from A to B. $2^{|A|}$ is the cardinality of the set of functions from A to a two-element set.
Why the notation $2^{|A|}$?

- On the most recent homework, you were asked to calculate, for finite sets A and B, the cardinality of the set of functions from A to B.
- You should’ve gotten the answer $|B|^{|A|}$.
Why the notation $2^{|A|}$?

- On the most recent homework, you were asked to calculate, for finite sets A and B, the cardinality of the set of functions from A to B.
- You should’ve gotten the answer $|B|^{|A|}$.
- $2^{|A|}$ is the cardinality of the set of functions from A to a two-element set.
- Think: a subset $X \subseteq A$ is really a function mapping each element of A to either yes or no.
What is $2^{\aleph_0} = |\mathbb{R}|$?

- The infinite cardinalities are $\aleph_0, \aleph_1, \aleph_2, \ldots$
- So $2^{\aleph_0} = |\mathbb{R}|$ is one of them. Can we figure out which one?

Conjecture (Cantor, the continuum hypothesis): $2^{\aleph_0} = \aleph_1$.

Kurt Gödel and Paul Cohen showed that the standard axioms for mathematics cannot settle Cantor's conjecture one way or the other. Both a true and a false answer are consistent. There are extra axioms you can add which do settle the continuum hypothesis, some saying yes and others saying no. But as yet no axiom has been proposed which settles CH and which the experts accept.

But I won't be able to talk about such in this class, since that is a graduate-level topic.
What is $2^{\aleph_0} = |\mathbb{R}|$?

- The infinite cardinalities are $\aleph_0, \aleph_1, \aleph_2, \ldots$.
- So $2^{\aleph_0} = |\mathbb{R}|$ is one of them. Can we figure out which one?
- Conjecture (Cantor, the continuum hypothesis): $2^{\aleph_0} = \aleph_1$.
What is $2^{\aleph_0} = |\mathbb{R}|$?

- The infinite cardinalities are $\aleph_0, \aleph_1, \aleph_2, \ldots$.
- So $2^{\aleph_0} = |\mathbb{R}|$ is one of them. Can we figure out which one?
- Conjecture (Cantor, the continuum hypothesis): $2^{\aleph_0} = \aleph_1$.
- Kurt Gödel and Paul Cohen showed that the standard axioms for mathematics cannot settle Cantor’s conjecture one way or the other. Both a true and a false answer are consistent.
What is $2^\aleph_0 = |\mathbb{R}|$?

- The infinite cardinalities are $\aleph_0, \aleph_1, \aleph_2, \ldots$.
- So $2^\aleph_0 = |\mathbb{R}|$ is one of them. Can we figure out which one?
- Conjecture (Cantor, the continuum hypothesis): $2^\aleph_0 = \aleph_1$.
- Kurt Gödel and Paul Cohen showed that the standard axioms for mathematics cannot settle Cantor’s conjecture one way or the other. Both a true and a false answer are consistent.
- There are extra axioms you can add which do settle the continuum hypothesis, some saying yes and others saying no. But as yet no axiom has been proposed which settles CH and which the experts accept.
What is $2^{\aleph_0} = |\mathbb{R}|$?

- The infinite cardinalities are $\aleph_0, \aleph_1, \aleph_2, \ldots$.
- So $2^{\aleph_0} = |\mathbb{R}|$ is one of them. Can we figure out which one?
- Conjecture (Cantor, the continuum hypothesis): $2^{\aleph_0} = \aleph_1$.
- Kurt Gödel and Paul Cohen showed that the standard axioms for mathematics cannot settle Cantor’s conjecture one way or the other. Both a true and a false answer are consistent.
- There are extra axioms you can add which do settle the continuum hypothesis, some saying yes and others saying no. But as yet no axiom has been proposed which settles CH and which the experts accept.
- But I won’t be able to talk about such in this class, since that is a graduate-level topic.