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ZF has some nice properties

As befitting an important foundational theory, ZF enjoys some
nice properties.

ZF isn’t finitely axiomatizable;

(If V = HOD) For each formula ϕ(x), ZF proves ϕ(x)
admits a definable Skolem function;

(Reflection) For each finite set T of axioms from ZF, ZF
proves there is a club of ordinals α so that Vα |= T .

If T0,T1 are extensions of ZF, then T0 and T1 are
bi-interpretable iff they have the same deductive closure.
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Tightness

Definition

A theory T is tight if any two deductively
complete extensions of T in the same language
are bi-interpretable iff they are identical.

The following theories are both tight and
semantically tight:

PA (Visser)

ZF (Enayat)

Z2, second-order arithmetic with full
comprehension (Enayat)

KM, second-order set theory with full
comprehension (Enayat)

(Without the same language restriction this is trivial. Consider e.g. ZF

+ “the new unary predicate is V” versus ZF + “the new unary predicate

is ∅”.)

For example, ZFC + CH and ZFC + ¬CH
are mutually interpretable: ZFC + CH can
be interpreted as L, and ZFC + ¬CH can
be interpreted through the boolean
ultrapower approach to forcing.

But these interpretations lose information,
and there is no way to produce a
bi-interpretation.
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The main question

For the nice foundational properties shared by ZF and KM, it’s
known that this requires the full strength of the theory.

For example, if you restrict Separation/Collection to
Σk -formulae, that fragment of ZF is finitely axiomatizable
and doesn’t have reflection/Skolem functions for sufficiently
complex formulae.

Question

Do we need the full strength of the theories to get tightness?

Earlier work by Alfredo Roque Freire and Joel David Hamkins
looked at certain fragments of ZF, showing they are not tight.

Freire and I investigated fragments of KM, looking at GB
and GB + Σ1

k -Comprehension.
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The main theorem

Theorem (Freire–W.)

The following theories are not tight.

GB;

GB + Σ1
k -Comprehension, for k ≥ 1.

We have analogous results for second-order
arithmetic, using the same constructions.

After we started writing our paper, we learned
that Ali Enayat had independently achieved
this theorem in forthcoming work, using a
different construction. (There’s some technical details on what

exactly his construction implies versus ours, with neither subsuming all of the

other.)

GB is axiomatized by

ZF for the sets;

Extensionality for classes;

Class Replacement—the image
of a set under a class function is
a set;

Comprehension for first-order
formulae—any class defined by a
first-order formula must exist.

Σ1
k -Comprehension says that classes

defined by Σ1
k -formulae must exist.

KM = GB + Σ1
ω-Comprehension.
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Who cares?

Admittedly, the motivation for this project is a bit niche.

But I think there’s something of interest here outside of the small
community of tight people!

What does it mean for T to not be tight?

It means we can find two different models of T , satisfying different
theories, which are bi-interpretable.

Indeed, we can do this in a uniform way.

In this case we do this by showing that minimum models of class
theories are bi-interpretable with carefully chosen Cohen extensions
with the same sets.

It seems to me that this kind of construction should be useful for other
purposes, whether in set theory or second-order arithmetic.
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A special case

To prove results about tightness, you need a
uniform construction, where you can only use
axioms in first-order logic to narrow down what
models you need to handle.

I’m going to ignore all that, not looking at
nonstandard models and the like.

Most of the big ideas can be seen looking
at particularly nice models of class theory.

And since the whole point is I want to
convince you these constructions could be
useful, I don’t want to bore and/or scare
you with finicky and/or fun details about
nonstandard models. (

:

We will look at models of class theories
whose sets form Vκ for an inaccessible κ.

We’ll assume that Vκ |= V = HOD,
because we will need Skolem functions.

I’ll focus on the GB case, but I will gladly
talk your ear off about the
Σ1
k -Comprehension case during a coffee

break.
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Warm-up: Identifying the minimum model of GB

The minimum model of GB over Vκ is

the
subsets of Vκ first-order definable with
parameters from Vκ, call this D.

Can we write down an axiom in class theory
which identifies this model?

Given access to the truth predicate T for
Vκ, this is easy:

X ∈ D iff X = {x : ϕ[x ] ∈ T}.
But Tarski proved truth is undefinable!

So in fact we can write down an axiom
Class = D which says every class is
definable.

T can’t be defined over Vκ, but it can be
defined over (Vκ,D):

The Σk -truth predicate is definable via a
Σk -formula.

Being a partial truth predicate is
recognizable by a first-order formula.

You can express ϕ[x ] ∈ T as “there exists
a partial truth predicate which judges ϕ[x ]
to be true”. This is Σ1

1.

There’s also a Π1
1 definition: “every large

enough partial truth predicate blah blah”.

Truth is ∆1
1, so all models of GB over Vκ

define it the same!
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Any model of of GB can interpret D

Every (Vκ,X ) |= GB correctly defines
truth T.

Achtung! T needn’t be an element of X .

So X can identify which of its classes are
in D.

This gives a very simple interpretation of
D in X .

Achtung! This interpretation requires
class quantifiers!

So we’re halfway to finding a pair of models
with different theories that nonetheless are
bi-interpretable.

The hard part is the interpretation in the other
direction: How can D interpret a model with
more classes?

The strategy will be to interpret an
extension by Cohen forcing Add(κ, 1).

We’ll find C ⊆ Add(κ, 1) which is generic
over D and definable over D.

Achtung! The definition necessarily will
use class quantifiers!

This will allow D to interpret D[C].
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Defining the Cohen generic C

From T you can define a κ-sequence of enough
dense subsets of Add(κ, 1) to guarantee
genericity over D.

Set Dα to consist of the intersection of
the dense open sets definable from
parameters in Vα.

Add(κ, 1) is <κ-closed, so each Dα is
dense open.

Getting below each Dα guarantees
generiticity over D.

Define C in κ many steps.

At stage α + 1, extend pα to meet Dα.

Use the HOD-order to choose pα+1.
This is the only place we need the
assumption Vκ |= V = HOD!

At limit stages, use <κ-closure to
continue.

C =
⋃
α<κ pα.

Every (Vκ,X ) |= GB defines T the same, so they all define C the same.

Because the forcing relations are definable, T(C) is definable from C. (This definition uses class

quantifiers!)
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Defining the Cohen generic C

From T you can define a κ-sequence of enough
dense subsets of Add(κ, 1) to guarantee
genericity over D.

Set Dα to consist of the intersection of
the dense open sets definable from
parameters in Vα.

Add(κ, 1) is <κ-closed, so each Dα is
dense open.

Getting below each Dα guarantees
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Putting the interpretations together

Claim: (Vκ,D) and (Vκ,D[C]) are bi-intepretable.

To interpret D in D[C], just use that T is definable to cut down the
domain.

To interpret D[C] in D, use that T[C] is definable in D:

Represent classes in D[C] by the HOD-least formula which defines
them.

Everything is sufficiently absolute that doing one interpretation then
the other gives an isomorphism.

Claim: (Vκ,D) and (Vκ,D[C]) satisfy different theories: they disagree on
whether Class = D.

So we get bi-interpretable models of GB over Vκ which satisfy distinct
theories.
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What is to be done for Σ1
k-Comprehension?

Follow the same general strategy of the minimum model being bi-intepretable with a Cohen
extension.

The minimum model of Σ1
k -CA over Vκ is

obtained by building up L(Vκ) below κ+.

Levels Lα(Vκ) are bi-interpretable with
Lα = P(Vκ) ∩ Lα(Vκ).

And Σ`-formulae in Lα(Vκ) correspond to
Σ1
` -formulae in Lα

Let Dk = Lα for the minimum α to get a
model of Σ1

k -Comprehension.

Use Jensen’s Σ`-uniformization lemma to
define a single subset Tk of Vκ which
codes all of Dk .

This Tk controls Dk like how T controls D.

The truth predicate is a canonical uniform
listing of the minimum model of GB.

Tk is a canonical uniform listing of the
minimum model of Σ1

k -Comprehension.

The definitions aren’t absolute to the
same generality as for T and D. But they
are absolute between width extensions,
and that’s good enough for the
bi-interpretation:

Dk and Dk [C] are bi-interpretable.
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What remains to be done to get nontightness?

To get nontightness, we need to be able to do the same construction in a more
general setting.

For this to work, we need Second-Order Replacement, a version of the
Replacement axiom for functions defined using class quantifiers. This is enough
to mimic the arguments that worked in the Vκ case.

For example, over GB this guarantees that the Σk -truth predicate exists for
every k , even nonstandard k.

This is a powerful axiom schema, but that just gives a stronger result: even a
powerful extra axiom isn’t enough to get tightness.

For the second-order arithmeticians: In your context, we get that ACA and
Π1
k -CA—i.e. with full Induction—are non-tight, as opposed to just ACA0 and

Π1
k -CA0.
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Thank you!

Alfredo Roque Freire and Kameryn J. Williams,
“Non-tightness in class theory and second-order arithmetic”
(under review).

Preprint: arXiv:2212.04445 [math.LO].
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