Nonstandard methods versus Nash-Williams

Kameryn J. Williams they/them

Sam Houston State University \rightarrow Bard College at Simon's Rock

MAMLS Spring Fling 2023 May 23

Joint work with Timothy Trujillo (SHSU)

K. Williams (SHSU \rightarrow SR)

Nonstandard Methods vs. Nash-Williams

MAMLS Spring Fling 2023 1 / 23

Sac

イロト イポト イヨト イヨト

Our project

- \bullet Nonstandard methods have been fruitfully applied to prove theorems about combinatorics on $\mathbb N$
 - Namedrop: Di Nasso, Goldbring, Jin, Tao, ...
- Topological Ramsey theory studies combinatorial topological spaces which generalize Ellentuck space (\approx the space of subsets of \mathbb{N}), the familiar setting for ordinary Ramsey theory
- Let's apply nonstandard methods to a more general setting than Ellentuck space
- Starting point: the Nash-Williams theorem for Ellentuck space and its generalization

We can use tools from model theory to prove theorems outside of logic

- Take a structure. For this talk, it will mostly be N
- Take an ultrapower of N to embed N into a saturated elementary extension *N
- Exploit the connection $\mathbb{N} \hookrightarrow {}^*\mathbb{N}$ to prove theorems about \mathbb{N}

A gentle warmup: the pigeonhole principle

Theorem (Pigeonhole Principle)

If you partition \mathbb{N} into finitely many pieces X_0, \ldots, X_n then one of the pieces is infinite.

∃ > < ∃</p>

< □ > < 同

A gentle warmup: the pigeonhole principle

Theorem (Pigeonhole Principle)

If you partition \mathbb{N} into finitely many pieces X_0, \ldots, X_n then one of the pieces is infinite.

Proof:

- Consider $\alpha \in {}^*\mathbb{N} \setminus \mathbb{N}$
- *X₀,...,*X_n are a partition of *N (by elementarity)
- So α is in some $*X_i$
- So X_i is infinite (by elementarity)

Iterating the * map

I lied earlier when I said nonstandard methods work by embedding $\mathbb N$ into ${}^*\mathbb N$

- 32

Sac

イロト イポト イヨト イヨト

Iterating the * map

I lied earlier when I said nonstandard methods work by embedding $\mathbb N$ into ${}^*\mathbb N$

- Actually we embed $V_{\omega}(\mathbb{N})$ into a saturated elementary extension
- Then $^*V_{\omega}(\mathbb{N})$ is a definable class in $V_{\omega}(\mathbb{N})$
- So ^{*}ℕ is a set in the domain of the embedding
- We can apply the * map to it and its elements
- If $\alpha \in {}^*\mathbb{N} \setminus \mathbb{N}$ then $\alpha < {}^*\alpha$
- And we can iterate:

$$\mathbb{N} \hookrightarrow {}^*\mathbb{N} \hookrightarrow {}^{*(2)}\mathbb{N} \hookrightarrow \cdots \hookrightarrow {}^{*(k)}\mathbb{N} \hookrightarrow \cdots$$

Theorem (Ramsey 1930)

Partition $[\mathbb{N}]^k$ into finitely many pieces X_0, \ldots, X_n . Then there is infinite $H \subseteq \mathbb{N}$ so that $[H]^k \subseteq X_i$ for some *i*.

Theorem (Ramsey 1930)

Partition $[\mathbb{N}]^k$ into finitely many pieces X_0, \ldots, X_n . Then there is infinite $H \subseteq \mathbb{N}$ so that $[H]^k \subseteq X_i$ for some *i*.

Proof (k = 3):

- Consider $\alpha \in *\mathbb{N} \setminus \mathbb{N}$
- Then $\langle \alpha, {}^{*}\alpha, {}^{*(2)}\alpha \rangle$ is in some ${}^{*(3)}X_i$
- So $\alpha \in {}^{*}{\{a \in \mathbb{N} : \langle a, \alpha, {}^{*}\alpha \rangle \in {}^{*(2)}X_i\}}.$
- So {a ∈ N : ⟨a, α, *α⟩ ∈ *(2)X_i} is infinite
- Let h_0 be the minimum member

Theorem (Ramsey 1930)

Partition $[\mathbb{N}]^k$ into finitely many pieces X_0, \ldots, X_n . Then there is infinite $H \subseteq \mathbb{N}$ so that $[H]^k \subseteq X_i$ for some *i*.

Proof (k = 3):

- Consider $\alpha \in {}^*\mathbb{N} \setminus \mathbb{N}$
- Then $\langle \alpha, {}^{*}\alpha, {}^{*(2)}\alpha \rangle$ is in some ${}^{*(3)}X_i$
- So $\alpha \in {}^{*}{\{a \in \mathbb{N} : \langle a, \alpha, {}^{*}\alpha \rangle \in {}^{*(2)}X_i\}}.$
- So {a ∈ N : (a, α, *α) ∈ *(2)X_i} is infinite
- Let h_0 be the minimum member

Now induct:

- Already built $H_i = \langle h_0, \ldots, h_i \rangle$
- Inductively, $lpha \in {}^{*}\{a \in \mathbb{N} : t^{\frown}a \in X_i\}$ for each $t \in [H_i]^2$
- And $\alpha \in {}^{*}{a \in \mathbb{N} : t^{\alpha}a^{\alpha} \in {}^{*}X_{i}}$ for each $t \in [H_{i}]^{1}$

Theorem (Ramsey 1930)

Partition $[\mathbb{N}]^k$ into finitely many pieces X_0, \ldots, X_n . Then there is infinite $H \subseteq \mathbb{N}$ so that $[H]^k \subseteq X_i$ for some *i*.

Proof (k = 3):

- Consider $\alpha \in *\mathbb{N} \setminus \mathbb{N}$
- Then $\langle \alpha, {}^{*}\alpha, {}^{*(2)}\alpha \rangle$ is in some ${}^{*(3)}X_i$
- So $\alpha \in {}^{*}{\{a \in \mathbb{N} : \langle a, \alpha, {}^{*}\alpha \rangle \in {}^{*(2)}X_i\}}.$
- So {a ∈ N : (a, α, *α) ∈ *(2)X_i} is infinite
- Let h_0 be the minimum member

Now induct:

- Already built $H_i = \langle h_0, \ldots, h_i \rangle$
- Inductively, $lpha \in {}^{*}\{a \in \mathbb{N} : t^{\frown}a \in X_i\}$ for each $t \in [H_i]^2$
- And $\alpha \in {}^{*}{a \in \mathbb{N} : t^{\alpha} \alpha \in {}^{*}X_{i}}$ for each $t \in [H_{i}]^{1}$
- \bullet Finitely many, and α is in their nonstandard intersection
- So their standard intersection is infinite
- Pick $h_{i+1} > h_i$ from that intersection

Finally $H = \langle h_i \rangle$ is monochromatic

(신문) (신문)

Generalizing Ramsey to families of sets of nonuniform size

Definition

The Schreier barrier S consists of all $s \in [\mathbb{N}]^{<\omega}$ so that $|s| = \min s + 1$.

- The first element of *s* tells you how long *s* is
- You can think of S as a tagged amalgamation of (copies of) all [ℕ]^k

A Ramsey property for the Schreier barrier

Theorem (Nash-Williams for S)

Partition S into finitely many pieces X_0, \ldots, X_n . Then there is infinite $H \subseteq \mathbb{N}$ so that $S \upharpoonright H$ is monochromatic.

$$\mathcal{S} \upharpoonright \mathcal{H} = \{ s \in \mathcal{S} : s \subseteq \mathcal{H} \}$$

 $\mathcal{S} = \{ s \in [\mathbb{N}]^{<\omega} : |s| = \min s + 1 \}$

∃ ► < ∃</p>

< □ > < 同

A Ramsey property for the Schreier barrier

Theorem (Nash-Williams for S)

Partition S into finitely many pieces X_0, \ldots, X_n . Then there is infinite $H \subseteq \mathbb{N}$ so that $S \upharpoonright H$ is monochromatic.

$$\mathcal{S} \upharpoonright H = \{ s \in \mathcal{S} : s \subseteq H \}$$
$$\mathcal{S} = \{ s \in [\mathbb{N}]^{<\omega} : |s| = \min s + 1 \}$$

- For $[\mathbb{N}]^k$ we looked at what piece of the partition contained $\langle \alpha, {}^*\alpha, \dots, {}^{*(k-1)}\alpha \rangle$
- But now we don't know in advance how long a sequence in S will be
- Intuitively, we want to look at

$$\langle \alpha, {}^*\alpha, \dots {}^{*(\alpha)}\alpha \rangle$$

• But this is nonsensical—what would it even mean to iterate * a nonstandard number of times?

A proxy for $\langle \alpha, {}^*\alpha, \dots {}^{*(\alpha)}\alpha \rangle$

Notation:

• *
$$\mathbb{N} = \dim_{k \in \omega} {}^{*(k)}\mathbb{N}$$

• For $\beta \in *\mathbb{N}$, let $k(\beta)$ be the least k so that $\beta \in {}^{*(k)}\mathbb{N}$

K. Williams (SHSU \rightarrow SR)

Nonstandard Methods vs. Nash-Williams

MAMLS Spring Fling 2023 9 / 23

500

A proxy for $\langle \alpha, {}^*\alpha, \dots {}^{*(\alpha)}\alpha \rangle$

Notation:

• *
$$\mathbb{N} = \operatorname{dir}_{k \in \omega} \lim_{k \to \infty} \lim_{k \to \infty}$$

• For $\beta \in *\mathbb{N}$, let $k(\beta)$ be the least k so that $\beta \in {}^{*(k)}\mathbb{N}$

Claim: Fix $\alpha \in *\mathbb{N}$. For any sequence $\langle \beta_i : i \in \omega \rangle$ there is (a non-unique) $\sum_{\alpha} \beta_i \in *\mathbb{N}$ so that for all $X \subseteq \mathbb{N}$

$$\sum_{i\in\mathbb{N};\,\alpha}\beta_i\in{}^*X\quad\Leftrightarrow\quad\alpha\in{}^*\{i\in\mathbb{N}:\beta_i\in{}^{*(k(\beta_i))}X\}$$

イロト 不得下 イヨト イヨト

A proxy for $\langle \alpha, {}^*\alpha, \dots {}^{*(\alpha)}\alpha \rangle$

Notation:

• *
$$\mathbb{N} = \dim_{k \in \omega} {}^{*(k)}\mathbb{N}$$

• For $\beta \in *\mathbb{N}$, let $k(\beta)$ be the least k so that $\beta \in {}^{*(k)}\mathbb{N}$

Claim: Fix $\alpha \in *\mathbb{N}$. For any sequence $\langle \beta_i : i \in \omega \rangle$ there is (a non-unique) $\sum_{\alpha} \beta_i \in *\mathbb{N}$ so that for all $X \subseteq \mathbb{N}$

$$\sum_{i\in\mathbb{N};\,\alpha}\beta_i\in{}^*X\quad\Leftrightarrow\quad\alpha\in{}^*\{i\in\mathbb{N}:\beta_i\in{}^{*(\boldsymbol{k}(\beta_i))}X\}$$

 \bullet Our proxy for $\langle \alpha, {}^{*}\alpha, \ldots, {}^{*(\alpha)}\alpha\rangle$ is then

$$\sigma(\alpha) = \sum_{i \in \mathbb{N}; \alpha} \langle \alpha, \dots, {}^{*(i)} \alpha \rangle$$

イロト 不得 トイヨト イヨト 二日

Nash-Williams for ${\mathcal S}$

Theorem (Nash-Williams for S)

Partition S into finitely many pieces X_0, \ldots, X_n . Then there is infinite $H \subseteq \mathbb{N}$ so that $S \upharpoonright H$ is monochromatic.

$$S \upharpoonright H = \{ s \in S : s \subseteq H \}$$

$$s_k = \langle \alpha, \dots *^{(k)} \alpha \rangle \text{ approximate } \sigma(\alpha)$$

Proof:

- Consider $\alpha \in {}^*\mathbb{N} \setminus \mathbb{N}$
- Then $\sigma(\alpha)$ is in some $*X_i$
- So $\alpha \in {}^{*}{\{a \in \mathbb{N} : a^{\frown}s_{a} \in {}^{*(a)}X_{i}\}}$
- Let h_0 be the minimum member

Nash-Williams for ${\mathcal S}$

Theorem (Nash-Williams for S)

Partition S into finitely many pieces X_0, \ldots, X_n . Then there is infinite $H \subseteq \mathbb{N}$ so that $S \upharpoonright H$ is monochromatic.

$$S \upharpoonright H = \{ s \in S : s \subseteq H \}$$

$$s_k = \langle \alpha, \dots *^{(k)} \alpha \rangle \text{ approximate } \sigma(\alpha)$$

Proof:

- Consider $\alpha \in {}^*\mathbb{N} \setminus \mathbb{N}$
- Then $\sigma(\alpha)$ is in some $*X_i$
- So $\alpha \in {}^{*}{\{a \in \mathbb{N} : a^{\frown}s_{a} \in {}^{*(a)}X_{i}\}}$
- Let h_0 be the minimum member

Now induct:

- Already built $H_i = \langle h_0, \ldots, h_i \rangle$
- Inductively, for each $t \subseteq H_i$ with $|t| < \min t + 1$ we have that $\alpha \in {}^{*}{a \in \mathbb{N} : t^{\frown}a^{\frown}s_{\ell} \in {}^{*(\ell)}X_i}$, for ℓ the right length

Nash-Williams for ${\mathcal S}$

Theorem (Nash-Williams for S)

Partition S into finitely many pieces X_0, \ldots, X_n . Then there is infinite $H \subseteq \mathbb{N}$ so that $S \upharpoonright H$ is monochromatic.

$$S \upharpoonright H = \{ s \in S : s \subseteq H \}$$

$$s_k = \langle \alpha, \dots^{*(k)} \alpha \rangle \text{ approximate } \sigma(\alpha)$$

Proof:

- Consider $\alpha \in {}^*\mathbb{N} \setminus \mathbb{N}$
- Then $\sigma(\alpha)$ is in some $*X_i$
- So $\alpha \in {}^{*}{\{a \in \mathbb{N} : a^{\frown}s_{a} \in {}^{*(a)}X_{i}\}}$
- Let h_0 be the minimum member

Now induct:

- Already built $H_i = \langle h_0, \ldots, h_i \rangle$
- Inductively, for each $t \subseteq H_i$ with $|t| < \min t + 1$ we have that $\alpha \in {}^{*}{a \in \mathbb{N} : t^{\frown}a^{\frown}s_{\ell} \in {}^{*(\ell)}X_i}$, for ℓ the right length
- Finitely many, so α is in their nonstandard intersection
- So their standard intersection is finite
- Pick $h_{i+1} > h_i$ from that intersection

Finally $H = \langle h_i \rangle$ is monochromatic

Further generalization: fronts

- $\mathcal{F} \subseteq [\mathbb{N}]^{<\omega}$ is a front if
 - (antichain or Nash-Williams property) $s \not\sqsubseteq t$ for $s \neq t$ from \mathcal{F}
 - (density)

For any infinite $b \subseteq \mathbb{N}$ there is $s \sqsubseteq b$ from \mathcal{F}

- 34

イロト 不得下 イヨト イヨト

Further generalization: fronts

- $\mathcal{F} \subseteq [\mathbb{N}]^{<\omega}$ is a front if
 - (antichain or Nash-Williams property) $s \not\sqsubseteq t$ for $s \neq t$ from \mathcal{F}
 - (density)

For any infinite $b \subseteq \mathbb{N}$ there is $s \sqsubseteq b$ from \mathcal{F}

Examples:

- $[\mathbb{N}]^k$ for any k
- The Schreier barrier ${\cal S}$

- 3

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

To prove a Ramsey property for $[\mathbb{N}]^k$ and S we had an idea of what a generic nonstandard member looked like, based on how the front was built up

- $\langle \alpha, \dots, {}^{*(k-1)}\alpha \rangle$ for $[\mathbb{N}]^k$
- $\sigma(\alpha)$, a proxy for $\langle lpha, \dots, {}^{*(lpha)} lpha
 angle$ for ${\mathcal S}$

To prove a Ramsey property for $[\mathbb{N}]^k$ and S we had an idea of what a generic nonstandard member looked like, based on how the front was built up

- $\langle \alpha, \dots, {}^{*(k-1)}\alpha \rangle$ for $[\mathbb{N}]^k$
- $\sigma(\alpha)$, a proxy for $\langle lpha, \ldots, {}^{*(lpha)} lpha
 angle$ for ${\mathcal S}$

If we want to do the same for an arbitrary front ${\cal F}$ we need to understand how ${\cal F}$ is built up

Trees of fronts

For ${\mathcal F}$ a front, set

 $\mathcal{T}(\mathcal{F}) = \{t \in [\mathbb{N}]^{<\omega} : t \sqsubseteq s \text{ for some } s \in \mathcal{F}\}$

Then $T(\mathcal{F})$ is a tree and \mathcal{F} are the leaves

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Trees of fronts

For ${\mathcal F}$ a front, set

 $T(\mathcal{F}) = \{t \in [\mathbb{N}]^{<\omega} : t \sqsubseteq s \text{ for some } s \in \mathcal{F}\}$

Then $T(\mathcal{F})$ is a tree and \mathcal{F} are the leaves **Claim:** $T(\mathcal{F})$ is well-founded

- If b were an infinite branch through T(F) it'd extend some s ∈ F by density
- But by the Nash-Williams property such s is unique so b couldn't be infinite

Trees of fronts

For ${\mathcal F}$ a front, set

 $T(\mathcal{F}) = \{t \in [\mathbb{N}]^{<\omega} : t \sqsubseteq s \text{ for some } s \in \mathcal{F}\}$

Then $T(\mathcal{F})$ is a tree and \mathcal{F} are the leaves **Claim:** $T(\mathcal{F})$ is well-founded

- If b were an infinite branch through T(F) it'd extend some s ∈ F by density
- But by the Nash-Williams property such s is unique so b couldn't be infinite

We can think of ${\mathcal F}$ as built up by induction on ${\mathcal T}({\mathcal F})$

- For $s \in \mathcal{F}$, set $\mathcal{F}_s = \{s\}$
- ullet For $s\in \mathcal{T}(\mathcal{F})\setminus \mathcal{F}$, set $\mathcal{F}_s=igcup_{t\in ext{succ}\,s}\mathcal{F}_t$
- Here succ s is the set of successors of s in $T(\mathcal{F})$
- Observe that \mathcal{F}_s is a front on $[\mathbb{N}]^{<\omega} \upharpoonright s$

Finally $\mathcal{F}=\mathcal{F}_{\emptyset}$

$$\mathcal{S} = \{ s \in [\mathbb{N}]^{<\omega} : |s| = \min s + 1 \}$$

What is S_s for subsequences s of (2,7,9)?

$$\mathcal{T}(\mathcal{S}) = \{t \in [\mathbb{N}]^{<\omega} : t \sqsubseteq s ext{ for some } s \in \mathcal{S}\}$$

= $\{t \in [\mathbb{N}]^{<\omega} : |s| \le \min s + 1\}$

$$egin{aligned} \mathcal{S}_s &= \{s\} & ext{if } s \in \mathcal{S} \ &= igcup_{t \in ext{succ } s} \mathcal{S}_s & ext{if } s \in \mathcal{T}(\mathcal{S}) \setminus \mathcal{S} \end{aligned}$$

3

Sac

メロト メポト メヨト メヨト

$$\mathcal{S} = \{s \in [\mathbb{N}]^{<\omega} : |s| = \min s + 1\}$$

$$egin{aligned} \mathcal{T}(\mathcal{S}) &= \{t \in [\mathbb{N}]^{<\omega}: t \sqsubseteq s ext{ for some } s \in \mathcal{S} \} \ &= \{t \in [\mathbb{N}]^{<\omega}: |s| \leq \min s + 1 \} \end{aligned}$$

What is S_s for subsequences s of (2,7,9)? Inductively from the end up:

•
$$\mathcal{S}_{\langle 2,7,9 \rangle} = \{ \langle 2,7,9 \rangle \}$$

$$egin{aligned} \mathcal{S}_s &= \{s\} & ext{if } s \in \mathcal{S} \ &= igcup_{t \in ext{succ } s} \mathcal{S}_s & ext{if } s \in \mathcal{T}(\mathcal{S}) \setminus \mathcal{S} \end{aligned}$$

Sac

$$\mathcal{S} = \{s \in [\mathbb{N}]^{<\omega} : |s| = \min s + 1\}$$

$$egin{aligned} \mathcal{T}(\mathcal{S}) &= \{t \in [\mathbb{N}]^{<\omega}: t \sqsubseteq s ext{ for some } s \in \mathcal{S} \} \ &= \{t \in [\mathbb{N}]^{<\omega}: |s| \leq \min s + 1 \} \end{aligned}$$

What is S_s for subsequences s of (2,7,9)? Inductively from the end up:

•
$$S_{\langle 2,7,9 \rangle} = \{ \langle 2,7,9 \rangle \}$$

• $S_{\langle 2,7 \rangle} = \{ \langle 2,7,c \rangle : 7 < c \}$

$$egin{aligned} \mathcal{S}_s &= \{s\} & ext{if } s \in \mathcal{S} \ &= igcup_{t \in ext{succ } s} \mathcal{S}_s & ext{if } s \in \mathcal{T}(\mathcal{S}) \setminus \mathcal{S} \end{aligned}$$

Sac

э.

$$\mathcal{S} = \{s \in [\mathbb{N}]^{<\omega} : |s| = \min s + 1\}$$

$$egin{aligned} \mathcal{T}(\mathcal{S}) &= \{t \in [\mathbb{N}]^{<\omega}: t \sqsubseteq s ext{ for some } s \in \mathcal{S} \} \ &= \{t \in [\mathbb{N}]^{<\omega}: |s| \leq \min s + 1 \} \end{aligned}$$

$$egin{aligned} \mathcal{S}_s &= \{s\} & ext{if } s \in \mathcal{S} \ &= igcup_{t \in ext{succ } s} \mathcal{S}_s & ext{if } s \in \mathcal{T}(\mathcal{S}) \setminus \mathcal{S} \end{aligned}$$

What is S_s for subsequences s of (2,7,9)? Inductively from the end up:

•
$$S_{\langle 2,7,9 \rangle} = \{ \langle 2,7,9 \rangle \}$$

• $S_{\langle 2,7 \rangle} = \{ \langle 2,7,c \rangle : 7 < c \}$
• $S_{\langle 2,7 \rangle} = \{ \langle 2,b,c \rangle : 2 < b < c \} = \{ 2^{\uparrow} t \}$

$$\begin{array}{l} \mathcal{C}_{2} = \{(2, b, c) : 2 < b < c\} = \{2, c, c\} \\ t \in [\mathbb{N} \setminus 3]^2 \} \end{array}$$

Sac

$$\mathcal{S} = \{s \in [\mathbb{N}]^{<\omega} : |s| = \min s + 1\}$$

$$egin{aligned} \mathcal{T}(\mathcal{S}) &= \{t \in [\mathbb{N}]^{<\omega}: t \sqsubseteq s ext{ for some } s \in \mathcal{S} \} \ &= \{t \in [\mathbb{N}]^{<\omega}: |s| \leq \min s + 1 \} \end{aligned}$$

$$egin{aligned} \mathcal{S}_s &= \{s\} & ext{if } s \in \mathcal{S} \ &= igcup_{t \in ext{succ } s} \mathcal{S}_s & ext{if } s \in \mathcal{T}(\mathcal{S}) \setminus \mathcal{S} \end{aligned}$$

What is S_s for subsequences s of (2,7,9)? Inductively from the end up:

•
$$\mathcal{S}_{\langle 2,7,9
angle} = \{ \langle 2,7,9
angle \}$$

• $\mathcal{S}_{\langle 2,7
angle} = \{ \langle 2,7,c
angle : 7 < c \}$

•
$$\mathcal{S}_{\langle 2 \rangle} = \{ \langle 2, b, c \rangle : 2 < b < c \} = \{2^{\uparrow}t : t \in [\mathbb{N} \setminus 3]^2 \}$$

•
$$\mathcal{S} = \mathcal{S}_{\emptyset} = \{a^{\frown}t : t \in [\mathbb{N} \setminus (a+1)]^a\}$$

Sac

Theorem (Nash-Williams theorem)

Let \mathcal{F} be a front. Partition \mathcal{F} into finitely many pieces X_0, \ldots, X_n . Then there is infinite $H \subseteq \mathbb{N}$ so that $\mathcal{F} \upharpoonright H$ is monochromatic.

Proof sketch: Fix $\alpha \in {}^*\mathbb{N} \setminus \mathbb{N}$

Theorem (Nash-Williams theorem)

Let \mathcal{F} be a front. Partition \mathcal{F} into finitely many pieces X_0, \ldots, X_n . Then there is infinite $H \subseteq \mathbb{N}$ so that $\mathcal{F} \upharpoonright H$ is monochromatic.

Proof sketch: Fix $\alpha \in {}^*\mathbb{N} \setminus \mathbb{N}$ The idea is, inductively build up $\sigma_{\emptyset} = \sigma_{\emptyset}(\alpha)$ to play a similar role as $\sigma(\alpha)$ did for S:

• For
$$s \in \mathcal{F}$$
, set $\sigma_s = \sigma_s(lpha)$ to be $\langle lpha
angle$

• For
$$s \in T(\mathcal{F}) \setminus \mathcal{F}$$
, set $\sigma_s = \sigma_s(\alpha)$ to be $\sum_{t \in \text{succ } s; \alpha} \sigma_t(\alpha)$

Recall:

$$\sum \sigma_t \in {}^*X \quad \Leftrightarrow \quad s^{\frown} \alpha \in {}^*\{a \in \mathbb{N} : \sigma_{s^\frown a} \in {}^*X\}$$

 $t \in \mathsf{succ} \, s; \alpha$

The Nash-Williams theorem for Ellentuck space

Theorem (Nash-Williams theorem)

Let \mathcal{F} be a front. Partition \mathcal{F} into finitely many pieces X_0, \ldots, X_n . Then there is infinite $H \subseteq \mathbb{N}$ so that $\mathcal{F} \upharpoonright H$ is monochromatic.

Proof sketch: Fix $\alpha \in {}^*\mathbb{N} \setminus \mathbb{N}$ The idea is, inductively build up $\sigma_{\emptyset} = \sigma_{\emptyset}(\alpha)$ to play a similar role as $\sigma(\alpha)$ did for S:

• For
$$s \in \mathcal{F}$$
, set $\sigma_s = \sigma_s(\alpha)$ to be $\langle \alpha \rangle$

• For
$$s \in T(\mathcal{F}) \setminus \mathcal{F}$$
, set $\sigma_s = \sigma_s(\alpha)$ to be $\sum_{t \in \text{succ } s; \alpha} \sigma_t(\alpha)$

Recall:

$$\sum \sigma_t \in {}^*X \quad \Leftrightarrow \quad s^{\frown} \alpha \in {}^*\{a \in \mathbb{N} : \sigma_{s^\frown a} \in {}^*X\}$$

 $t \in \mathsf{succ} \, s; \alpha$

- $\sigma_{\emptyset}(\alpha)$ is in some $^{*}X_{i}$
- Pick h_0 to be the minimum element of $\{a \in \mathbb{N} : \sigma_a \in {}^*X_i\}$
- Then inductively pick $h_{i+1} > h_i$ using that α is in $\{a \in \mathbb{N} : \sigma_{t \cap a} \in X_i\}$ for each subset t of the *i*-th partial solution H_i

Finally $H = \langle h_i \rangle$ is monochromatic

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Ellentuck space \mathcal{E} has multiple components

- The points are elements of $[\mathbb{N}]^\omega$
- You can associate to each point its k-th finite approximation in [ℕ]^k
- \bullet There is a partial order \subseteq on points

Abstract Ramsey spaces

Ellentuck space \mathcal{E} has multiple components

- $\bullet\,$ The points are elements of $[\mathbb{N}]^\omega$
- You can associate to each point its k-th finite approximation in [ℕ]^k
- $\bullet\,$ There is a partial order \subseteq on points

And \mathcal{E} has some nice properties

- (A.1) Sequencing: points behave like infinite sequences
- (A.2) Finitization: you can port the partial order ⊆ to the finite approximations, and each approximation has a finite number of predecessors
- (A.3) Amalgamation: [this one's more technical]
- (A.4) Pigeonhole: as it says in the name

Ellentuck space \mathcal{E} has multiple components

- $\bullet\,$ The points are elements of $[\mathbb{N}]^\omega$
- You can associate to each point its k-th finite approximation in [ℕ]^k
- $\bullet\,$ There is a partial order \subseteq on points

And \mathcal{E} has some nice properties

- (A.1) Sequencing: points behave like infinite sequences
- (A.2) Finitization: you can port the partial order ⊆ to the finite approximations, and each approximation has a finite number of predecessors
- (A.3) Amalgamation: [this one's more technical]

(A.4) Pigeonhole: as it says in the name

A Ramsey space is a tuple $(\mathcal{R}, \mathcal{AR}, \leq, r)$ satisfying (A.1–4) where \mathcal{R} are the points, $r : \mathcal{R} \times \omega \to \mathcal{AR}$ is the finite approximation map, and \leq is the partial order

The topological in topological Ramsey theory

The Ellentuck topology on ${\mathcal R}$ is generated by basic open sets

 $[a,X] = \{Y \in \mathcal{R} : Y \leq X \text{ and } \exists k r_k(Y) = a\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The topological in topological Ramsey theory

The Ellentuck topology on \mathcal{R} is generated by basic open sets

 $[a,X] = \{Y \in \mathcal{R} : Y \leq X \text{ and } \exists k r_k(Y) = a\}.$

If \mathcal{R} is closed as a subspace of the product topology on \mathcal{AR} , it's quite nice

- X ⊆ R is Ramsey if you can refine any basic open set be either contained in or disjoint from X
- *X* ⊆ *R* is Ramsey null if it is Ramsey and you can always refine to be disjoint from *X*

- If \mathcal{R} is closed, any Baire subset is Ramsey and any meager subset is Ramsey null
- Indeed any Souslin-measurable or Borel subset is Ramsey

イロト 不得下 イヨト イヨト

The abstract Nash-Williams theorem

Theorem (Abstract Nash-Williams)

Suppose \mathcal{R} is closed. Then any front on the finite approximations \mathcal{AR} satisfies a Ramsey partition property.

Theorem (Abstract Nash-Williams)

Suppose \mathcal{R} is closed. Then any front on the finite approximations \mathcal{AR} satisfies a Ramsey partition property.

• I'd like to say our nonstandard proof of the Nash-Williams theorem extends directly to the full abstract Nash-Williams theorem

• But

Theorem (Abstract Nash-Williams)

Suppose \mathcal{R} is closed. Then any front on the finite approximations \mathcal{AR} satisfies a Ramsey partition property.

- I'd like to say our nonstandard proof of the Nash-Williams theorem extends directly to the full abstract Nash-Williams theorem
- But we need the space to be amenable to nonstandard methods
- And we don't (yet?) have a proof that this applies to every nontrivial Ramsey space

What we do have for the abstract Nash-Williams theorem

Under an extra assumption the nonstandard proof goes through.

Theorem (Partial abstract Nash-Williams)

Consider a front \mathcal{F} on \mathcal{AR} . Suppose

- \mathcal{AR} is infinitely branching everywhere; and
- There is a filter C on \mathcal{R} so that for each $s \in T(\mathcal{F}) \setminus \mathcal{F}$ the restriction of succ s to C is a nonprincipal ultrafilter on succ s.

Then \mathcal{F} satisfies a Ramsey partition property.

- $\bullet~(\mathcal{R},\leq)$ is a poset, so the usual definition of filter applies to $\mathcal C$
- succ $s \upharpoonright X = \{t \in \operatorname{succ} s : \exists k \ t \leq_{\operatorname{fin}} r_k(X)\}$
- succ $s \upharpoonright C = \{ \operatorname{succ} s \upharpoonright X : X \in C \}$

Any Ramsey space which can be thought of as its (k + 1)-th approximations coming from k-th approximations by concatenating sequences from (cofinite subsets of) a countable alphabet will admit such a filter

- Ellentuck space
 - Restrict any nonprincipal ultrafilter on $\mathcal{P}(\mathbb{N})$ to the infinite subsets to get $\mathcal C$

Any Ramsey space which can be thought of as its (k + 1)-th approximations coming from k-th approximations by concatenating sequences from (cofinite subsets of) a countable alphabet will admit such a filter

- Ellentuck space
 - Restrict any nonprincipal ultrafilter on $\mathcal{P}(\mathbb{N})$ to the infinite subsets to get $\mathcal C$
- The Milliken space of block sequences
- The Hales-Jewett space of variable words
- The space $\mathcal{E}_{\omega}(\mathbb{N})$ of equivalence relations on \mathbb{N} with infinite quotients

<=> <=> <= <<<<>><</><</></>

A silly negative example

The V space

- V has two points, the constant 0 sequence and the constant 1 sequence
- Finite approximations are finite constant 0 or 1 sequences
- \bullet Trivially, any front on \mathcal{AV} satisfies a Ramsey partition property
- But ${\mathcal V}$ doesn't satisfy the filter property!

Continuing work

Question

Suppose you have a nontrivial^a Ramsey space $(\mathcal{R}, \mathcal{AR}, \leq, r)$ and a front \mathcal{F} on \mathcal{AR} . Then there is a filter \mathcal{C} on \mathcal{R} so that for each $s \in T(\mathcal{F}) \setminus \mathcal{F}$ the restriction of succ s to \mathcal{C} is a nonprincipal ultrafilter on succ s.

^aWhat should this mean?

- (*R*, ≤) is a poset, so the usual definition of filter applies to *C*
- succ $s \upharpoonright X = \{t \in \operatorname{succ} s : \exists k \ t \leq_{\operatorname{fin}} r_k(X)\}$
- succ $s \upharpoonright C = \{ \operatorname{succ} s \upharpoonright X : X \in C \}$

Continuing work

Question

Suppose you have a nontrivial^a Ramsey space $(\mathcal{R}, \mathcal{AR}, \leq, r)$ and a front \mathcal{F} on \mathcal{AR} . Then there is a filter \mathcal{C} on \mathcal{R} so that for each $s \in T(\mathcal{F}) \setminus \mathcal{F}$ the restriction of succ s to \mathcal{C} is a nonprincipal ultrafilter on succ s.

^aWhat should this mean?

- (\mathcal{R}, \leq) is a poset, so the usual definition of filter applies to \mathcal{C}
- succ $s \upharpoonright X = \{t \in \operatorname{succ} s : \exists k \ t \leq_{\operatorname{fin}} r_k(X)\}$
- succ $s \upharpoonright C = \{ \operatorname{succ} s \upharpoonright X : X \in C \}$

- The abstract Nash-Williams theorem isn't the only theorem in abstract Ramsey theory
- What other results are amenable to nonstandard methods?

Thank you!

K. Williams (SHSU \rightarrow SR)

Nonstandard Methods vs. Nash-Williams

MAMLS Spring Fling 2023 23 / 23

3

Sac

イロト イポト イヨト イヨト