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Our project

e Nonstandard methods have been fruitfully applied to prove theorems
about combinatorics on N

e Namedrop: Di Nasso, Goldbring, Jin, Tao, ...

@ Topological Ramsey theory studies combinatorial topological spaces
which generalize Ellentuck space (/ the space of subsets of N), the
familiar setting for ordinary Ramsey theory

@ Let’s apply nonstandard methods to a more general setting than
Ellentuck space

@ Starting point: the Nash-Williams theorem for Ellentuck space and its
generalization
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Nonstandard methods

We can use tools from model theory to prove
theorems outside of logic

@ Take a structure. For this talk, it will
mostly be N

@ Take an ultrapower of N to embed N into
a saturated elementary extension *N

@ Exploit the connection N — *N to prove
theorems about N
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If you partition N into finitely many pieces
infinite.

Xo, - .., X, then one of the pieces is

«O» «<Fr» «E>» «E» = o>



A gentle warmup: the pigeonhole principle

Theorem (Pigeonhole Principle)

If you partition N into finitely many pieces

Xo, ..., X, then one of the pieces is @
infinite. h \ A
Proof:
e Considera e *N\N | ----- >
@ *Xp,...,* X, are a partition of *N
(by elementarity)
@ So «v is in some *X; N

@ So X; is infinite
(by elementarity)
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| lied earlier when | said nonstandard methods
work by embedding N into *N
«40>» «F>» «E» « E>» = o>
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lterating the * map

| lied earlier when | said nonstandard methods
work by embedding N into *N

o Actually we embed V,,(N) into a "Vu(N)
saturated elementary extension

@ Then *V,(N) is a definable class in V,(N) Vu(N)

@ So *N is a set in the domain of the
embedding

o We can apply the * map toitandits |\ [----- >
elements

o If a € *N\ N then o < *«v

@ And we can iterate: N *N
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Partition [N]¥ into finitely many pieces

Xo, ..., Xn. Then there is infinite H C N
so that [H]* C X; for some i.

«O» «F>» «E» « E>» = Q>




A slightly less gentle warmup: Ramsey's theorem

Theorem (Ramsey 1930)

Partition [N]* into finitely many pieces
Xo, ..., X,. Then there is infinite H C N
so that [H]X C X; for some i.

Proof (k = 3):

Consider o € *N\ N

Then (o, *a, @ a) is in some *G)X;
Soa€*{aeN: (aa,*a) e X}

So{aeN:(a,a*) e PX}is
infinite

@ Let hg be the minimum member
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A slightly less gentle warmup: Ramsey's theorem

Theorem (Ramsey 1930) Now induct:
Partition [N]* into finitely many pieces o Already built H; = (ho, ..., hi)
Xo, ..., X,. Then there is infinite H C N @ Inductively, « € *{a e N: t"a € X;} for
so that [H]* C X; for some i. each t € [H/]?
o e And a € *{ae N: t"a"«a € *X;} for each

Proof (k = 3): £ € [H]!

e Consider a € *N\ N

@ Then (o, *a,*@a) is in some *G)X;

o Soac*{acN:(aa*a)c*@X}.

@ So{aeN:(aa*a)c X is

infinite

@ Let hg be the minimum member
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A slightly less gentle warmup: Ramsey's theorem

Theorem (Ramsey 1930) Now induct:
Partition [N]* into finitely many pieces o Already built H; = (ho, ..., hj)
Xo, ..., X,. Then there is infinite H C N @ Inductively, « € *{a e N: t"a € X;} for
so that [H]* C X; for some i. each t € [H/]?
o e And a € *{ae N: t"a"«a € *X;} for each

Proof (k = 3): £ € [H]!

o Consider « € "N\ N e Finitely many, and « is in their

@ Then (o, *a,*@a) is in some *G)X; nonstandard intersection

@ Soac*{acN: (aa*a)ec* X} @ So their standard intersection is infinite

@ So{aeN:(aa*) e PX}is @ Pick hj;1 > h; from that intersection

infinite Finally H = (h;) is monochromatic

@ Let hg be the minimum member
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The Schreier barrier S consists of all
s € [N]<¥ so that |s| = mins + 1.

long s is

@ The first element of s tells you how
@ You can think of S as a tagged

amalgamation of (copies of) all [N]*




Partition S into finitely many pieces
Xo, ..., Xn. Then there is infinite H C N
so that S [ H is monochromatic.

SIH={seS:sCH}

S={se[N]*¥:|s| =mins+ 1}

«O» «<Fr» «E>» «E» = o>




A Ramsey property for the Schreier barrier

Theorem (Nash-Williams for S)

Partition S into finitely many pieces o For [N]* we looked at what piece of the
Xo, ..., X,. Then there is infinite H C N partition contained (o, *a, ..., *(k_l)a>
so that S | H is monochromatic. @ But now we don't know in advance how

SIH={seS:sCH long a sequence in S will be

S={se[NJ<¥:|s| = mins+1} @ Intuitively, we want to look at

@ But this is nonsensical—what would it
even mean to iterate * a nonstandard
number of times?
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Notation:
e *N = dirlim *(¥)N
kew
e For 3 € *N, let k(j3) be the least k so that § € *(K)N
«O0>» «Fr «Z>» «E)» = A
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Notation:
e *N = dirlim *(¥)N
kEw
e For 3 € *N, let k(j3) be the least k so that § € *(K)N
>, B € *N so that for all X C N

Claim: Fix a € *N. For any sequence (f3; : i € w) there is (a non-unique)

ieN; a

Y BieX & ac*{ieN:g e fx}
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Notation:
e *N = dirlim *(¥)N
kEw
e For 3 € *N, let k(j3) be the least k so that § € *(K)N
>, B € *N so that for all X C N

Claim: Fix a € *N. For any sequence (f3; : i € w) there is (a non-unique)
Y BieX & ac*{ieN:g e fx}
i€eN; a

@ Our proxy for (a,

*a, .

., *(@a) is then
o(a) = Z (a,...,*0a)
ieN; a
<O> <Fr «Er <2r» E HAC
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Partition S into finitely many pieces
Xo, ..., Xn. Then there is infinite H C N
so that S [ H is monochromatic.

SIH={seS:sCH}

sk = (a,...*(Ka) approximate ()
Proof:

e Consider a € *N\ N
@ Then o(«) is in some *X;
@ Soae*{aeN:a"s, € *("’)X,-}

@ Let hg be the minimum member



Nash-Williams for S

Theorem (Nash-Williams for S) Now induct:

Partition S into finitely many pieces o Already built H; = (ho, ..., h;)

Xo, ..., X,. Then there is infinite H C N @ Inductively, for each t C H; with

so that S | H is monochromatic. |t| < mint+ 1 we have that
ac*{aeN:ta~s € *OX;}, for £ the

SIH={seS:sCH}

sk = (a,...*(Ka) approximate ()
Proof:

e Consider € *N\ N

right length

@ Then o(«) is in some *X;
@ Soac*{acN:as, e (X}
°

Let hg be the minimum member
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Nash-Williams for S

Theorem (Nash-Williams for S)

Partition S into finitely many pieces
Xo, ..., X,. Then there is infinite H C N
so that S [ H is monochromatic.

SIH={seS:sCH}

sk = (a,...*(Ka) approximate ()
Proof:

e Consider a € *N\ N
@ Then o(«) is in some *X;
@ Soae*{aeN:a"s, € *(a)X,-}

@ Let hg be the minimum member

Now induct:
e Already built H; = (ho, ..., h;)
@ Inductively, for each t C H; with
|t| < mint+ 1 we have that
ac*{aeN:ta~s € *OX;}, for £ the
right length

@ Finitely many, so « is in their nonstandard
intersection

@ So their standard intersection is finite
@ Pick hj11 > h; from that intersection
Finally H = (h;) is monochromatic
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F C [N]<¥ is a front if
e (antichain or Nash-Williams property)
st fors#tfrom F
e (density)
For any infinite b C N there is s C b from F
«<O» «F> <> «E>» E DAl
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F C [N]<¥ is a front if
e (antichain or Nash-Williams property)
st fors#tfrom F
e (density)
For any infinite b C N there is s C b from F
Examples:
o [N]* for any k

@ The Schreier barrier S
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,*(k=1)q) for [N]K
e o(a), a proxy for (a,...,*@aq) for S

To prove a Ramsey property for [N]k and S we had an idea of what a
built up
° (a,...

generic nonstandard member looked like, based on how the front was



Ramsey properties for fronts

To prove a Ramsey property for [N]¥ and S we had an idea of what a
generic nonstandard member looked like, based on how the front was

built up
o (a,...,*(k=1q) for [N]¥
e o(a), a proxy for (a,...,*®a) for S

If we want to do the same for an arbitrary front F we need to
understand how F is built up
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For F a front, set
T(F)={te€[N]¥: tCs for some s € F}
Then T(F) is a tree and F are the leaves
«O0>» «Fr «Z>» «E)» = A
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Trees of fronts
For F a front, set
T(F)={t €[N]<¥: tC s for some s € F}

Then T(F) is a tree and F are the leaves
Claim: T(F) is well-founded

e If b were an infinite branch through T(F)
it'd extend some s € F by density

@ But by the Nash-Williams property such s
is unique so b couldn’t be infinite
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Trees of fronts

For F a front, set
or /- atront, s We can think of F as built up by induction on

T(F)={te[N]*:tCsforsomesec F} I(F)
@ For s € F, set s ={s}

Then T(F) is a tree and F are the leaves o Forse T(F)\ F, set 7o = 7
a . ! s tesuccs
Claim: T(F) is well-founded @ Here succs is the set of successors of s in

e If b were an infinite branch through T(F) T(F)
it'd extend some s € F by density e Observe that F; is a front on [N]<“ | s

@ But by the Nash-Williams property such s Finally F = F
is unique so b couldn't be infinite g
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S={se[N]<¥:|s| = mins+ 1}
T(S)={t € [N]*¥: tC s for some s € S}
= {t € [N]*“: |s| < mins+ 1}

Ss = {s}

What is Ss for subsequences s of (2,7,9)?
ifseS

tesuccs

= | s ifseT()\S



S={se[N]<¥:|s| = mins+ 1}
T(S)={t € [N]*¥: tC s for some s € S}
= {t € [N]*“: |s| < mins+ 1}

Ss = {s}

What is Ss for subsequences s of (2,7,9)?
Inductively from the end up:
ifseS
tesuccs

@ S<2,7,9) ={(2,7,9)}
= | s ifseT()\S



S={se[N]<¥:|s| = mins+ 1}
T(S)={t € [N]*¥: tC s for some s € S}
= {t € [N]*“: |s| < mins+ 1}

Ss = {s}

What is Ss for subsequences s of (2,7,9)?
Inductively from the end up:
ifseS

® Sp79 =1{(2,7,9)}
° Sp7y=1{(2,7,¢): 7 <c}
= | s ifseT()\S
tesuccs



An example: the Schreier barrier

S={se[N]<¥:|s| =mins+1}
What is S, for subsequences s of (2,7,9)7?
T(S) = {t € [N]<“ : t C s for some s € S} Inductively from the end up:

= {t € [N]<“ : |s| < mins +1} ® Sp79 =1{(2,7,9)}
o 8<277> = {<2,7, C> T < C}

®© Spy=1{(2,b,c):2<b<c}={2"t:

Ss = {s} ifseS t € [N\3%}
= | s ifseT()\S
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An example: the Schreier barrier

S={se[N]<¥:|s| =mins+1}
What is S, for subsequences s of (2,7,9)7?
T(S) = {t € [N]<“ : t C s for some s € S} Inductively from the end up:

= {t € [N]<“ : |s| < mins +1} ® Sp79 =1{(2,7,9)}
o 8<277> = {<2,7, C> T < C}

®© Spy=1{(2,b,c):2<b<c}={2"t:
t € [N\3]}

Ss = {s} ifseS
_ U S, ifse T(S)\s e S=5 ={a"t:te[N\(a+1)]°}
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Let F be a front. Partition F into finitely
many pieces Xy, ..., X,. Then there is infinite
H C N so that F | H is monochromatic.

Proof sketch: Fix a € *N\ N




The Nash-Williams theorem for Ellentuck space

Theorem (Nash-Williams theorem)

Let F be a front. Partition F into finitely
many pieces Xy, ..., X,. Then there is infinite
H C N so that F | H is monochromatic.

Proof sketch: Fix « € *N\ N
The idea is, inductively build up oy = oy(a) to
play a similar role as o(«) did for S:

e Fors € F, set 05 = 05(a) to be ()

e Forse T(F)\F, set 05 = 0s(a) to be

> tesuces;a Ot(Q)

Recall:

Y ore*’X & sTae*{aeN:o,, X}

tesuccs; o
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The Nash-Williams theorem for Ellentuck space

Theorem (Nash-Williams theorem)

Let F be a front. Partition F into finitely 0 ey(@) B o eeiie o5

many pieces Xo, ..., X,. Then there is infinite @ Pick ho to be the minimum element of
H C N so that F | H is monochromatic. {aeN:o, €7Xi}

@ Then inductively pick hjy1 > h; using that
Proof sketch: Fix o € "N\ N aisin *{a € N: o,~, € *X;} for each
The idea is, inductively build up oy = oy(a) to subset t of the i-th partial solution H;

play a similar role as o(«) did for S: Siielly 2= () s eiedieiEe
e Fors € F, set 05 = 05(a) to be ()
e Forse T(F)\F, set 05 = 0s(a) to be
> tesuces;a Ot(Q)
Recall:
Y ore*’X & sTae*{aeN:o,, X}

tesuccs; o
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Ellentuck space £ has multiple components
@ The points are elements of [N]

@ You can associate to each point its k-th
finite approximation in [N]*

@ There is a partial order C on points

«O» «<Fr» «E>» «E» = o>



Abstract Ramsey spaces

Ellentuck space £ has multiple components
@ The points are elements of [N]“

@ You can associate to each point its k-th
finite approximation in [N]*

@ There is a partial order C on points

K. Williams (SHSU — SR)

Nonstandard Methods vs. Nash-Williams

And £ has some nice properties

(A.1) Sequencing: points behave like infinite
sequences

(A.2) Finitization: you can port the partial
order C to the finite approximations,
and each approximation has a finite
number of predecessors

(A.3) Amalgamation: [this one’s more
technical]

(A.4) Pigeonhole: as it says in the name
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Abstract Ramsey spaces

And £ has some nice properties

(A.1) Sequencing: points behave like infinite

Ellentuck space £ has multiple components sequences

(A.2) Finitization: you can port the partial
order C to the finite approximations,
and each approximation has a finite
number of predecessors

@ The points are elements of [N]“
@ You can associate to each point its k-th
finite approximation in [N]*

® There is a partial order < on points (A.3) Amalgamation: [this one's more

technical]

(A.4) Pigeonhole: as it says in the name

A Ramsey space is a tuple (R, AR, <, r) satisfying (A.1-4) where R are the points,
r: R xw— AR is the finite approximation map, and < is the partial order
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The Ellentuck topology on R is generated by
basic open sets
[a, X]={Y eR:Y < X and 3k r(Y) = a}.
0> «F»r» «E>» «Er» E DA
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The topological in topological Ramsey theory

The Ellentuck topology on R is generated by
basic open sets

[, X] ={Y €R: Y < X and 3k r,(Y) = a}.

If R is closed as a subspace of the product @ If R is closed, any Baire subset is Ramsey
topology on AR, it's quite nice and any meager subset is Ramsey null
e X C R is Ramsey if you can refine any @ Indeed any Souslin-measurable or Borel
basic open set be either contained in or subset is Ramsey

disjoint from X

e X C R is Ramsey null if it is Ramsey and
you can always refine to be disjoint from
X
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Suppose R is closed. Then any front on the finite

approximations AR satisfies a Ramsey partition property.
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The abstract Nash-Williams theorem

Theorem (Abstract Nash-Williams)

Suppose R is closed. Then any front on the finite
approximations AR satisfies a Ramsey partition property.

@ |'d like to say our nonstandard proof of the
Nash-Williams theorem extends directly to the full
abstract Nash-Williams theorem

e But
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The abstract Nash-Williams theorem

Theorem (Abstract Nash-Williams)

Suppose R is closed. Then any front on the finite
approximations AR satisfies a Ramsey partition property.

@ |'d like to say our nonstandard proof of the
Nash-Williams theorem extends directly to the full
abstract Nash-Williams theorem

@ But we need the space to be amenable to nonstandard
methods

@ And we don't (yet?) have a proof that this applies to
every nontrivial Ramsey space
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What we do have for the abstract Nash-Williams theorem

Under an extra assumption the nonstandard proof goes through.

Theorem (Partial abstract Nash-Williams)
Consider a front F on AR. Suppose
o AR is infinitely branching everywhere; and

@ There is a filter C on R so that for each s € T(F) \ F the
restriction of succs to C is a nonprincipal ultrafilter on succs.

Then F satisfies a Ramsey partition property.

@ (R,<) is a poset, so the usual definition of filter applies to C
@ succs [ X = {t €succs: Ik t <gp re(X)}
@ succs [ C={succs [ X : X €C}
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Positive examples

Any Ramsey space which can be thought of as its (k + 1)-th approximations
coming from k-th approximations by concatenating sequences from
(cofinite subsets of) a countable alphabet will admit such a filter

o Ellentuck space

o Restrict any nonprincipal ultrafilter on P(N) to the infinite subsets to
get C
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Positive examples

Any Ramsey space which can be thought of as its (k + 1)-th approximations
coming from k-th approximations by concatenating sequences from
(cofinite subsets of) a countable alphabet will admit such a filter

o Ellentuck space

o Restrict any nonprincipal ultrafilter on P(N) to the infinite subsets to
get C

@ The Milliken space of block sequences
@ The Hales—Jewett space of variable words

@ The space &,(N) of equivalence relations on N with infinite quotients
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A silly negative example

The V space

@ V has two points, the constant 0 sequence

@ Trivially, any front on AV satisfies a
and the constant 1 sequence

Ramsey partition property
o Finite approximations are finite constant 0

But V doesn’t satisfy the filter property!
or 1 sequences

(=)
[l
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Continuing work

Question

Suppose you have a nontrivial® Ramsey space

(R, AR,<,r) and a front F on AR. Then there is
a filter C on R so that for each s € T(F)\ F the

restriction of succs to C is a nonprincipal ultrafilter
on succs.

?What should this mean?

e (R,<) is a poset, so the usual definition of
filter applies to C

@ succs [ X = {t €succs: Ik t <g, re(X)}
@ succs [ C={succs | X : X €C}
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Continuing work

Question

Suppose you have a nontrivial® Ramsey space
(R, AR,<,r) and a front F on AR. Then there is
a filter C on R so that for each s € T(F)\ F the

restriction of succs to C is a nonprincipal ultrafilter @ The abstract Nash-Williams
on succs. theorem isn’t the only theorem

in abstract Ramsey theory

?What should this mean?

@ What other results are amenable

. I to nonstandard methods?
e (R,<) is a poset, so the usual definition of

filter applies to C
@ succs [ X = {t €succs: Ik t <g, re(X)}
@ succs [ C={succs | X : X €C}
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Thank you!
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