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Our project

Nonstandard methods have been fruitfully applied to prove theorems
about combinatorics on N

Namedrop: Di Nasso, Goldbring, Jin, Tao, . . .

Topological Ramsey theory studies combinatorial topological spaces
which generalize Ellentuck space (≈ the space of subsets of N), the
familiar setting for ordinary Ramsey theory

Let’s apply nonstandard methods to a more general setting than
Ellentuck space

Starting point: the Nash-Williams theorem for Ellentuck space and its
generalization

K. Williams (SHSU → SR) Nonstandard Methods vs. Nash-Williams MAMLS Spring Fling 2023 2 / 23



Nonstandard methods

We can use tools from model theory to prove
theorems outside of logic

Take a structure. For this talk, it will
mostly be N
Take an ultrapower of N to embed N into
a saturated elementary extension ∗N
Exploit the connection N ↪→ ∗N to prove
theorems about N

N ∗N

K. Williams (SHSU → SR) Nonstandard Methods vs. Nash-Williams MAMLS Spring Fling 2023 3 / 23



A gentle warmup: the pigeonhole principle

Theorem (Pigeonhole Principle)

If you partition N into finitely many pieces
X0, . . . ,Xn then one of the pieces is
infinite.

Proof:

Consider α ∈ ∗N \ N
∗X0, . . . ,

∗Xn are a partition of ∗N
(by elementarity)

So α is in some ∗Xi

So Xi is infinite
(by elementarity)

N

α

K. Williams (SHSU → SR) Nonstandard Methods vs. Nash-Williams MAMLS Spring Fling 2023 4 / 23



A gentle warmup: the pigeonhole principle

Theorem (Pigeonhole Principle)

If you partition N into finitely many pieces
X0, . . . ,Xn then one of the pieces is
infinite.

Proof:

Consider α ∈ ∗N \ N
∗X0, . . . ,

∗Xn are a partition of ∗N
(by elementarity)

So α is in some ∗Xi

So Xi is infinite
(by elementarity)

N

α

K. Williams (SHSU → SR) Nonstandard Methods vs. Nash-Williams MAMLS Spring Fling 2023 4 / 23



Iterating the ∗ map

I lied earlier when I said nonstandard methods
work by embedding N into ∗N

Actually we embed Vω(N) into a
saturated elementary extension

Then ∗Vω(N) is a definable class in Vω(N)

So ∗N is a set in the domain of the
embedding

We can apply the ∗ map to it and its
elements

If α ∈ ∗N \ N then α < ∗α

And we can iterate:

N ↪→ ∗N ↪→ ∗(2)N ↪→ · · · ↪→ ∗(k)N ↪→ · · ·

N

Vω(N)

∗N

∗Vω(N)
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A slightly less gentle warmup: Ramsey’s theorem

Theorem (Ramsey 1930)

Partition [N]k into finitely many pieces
X0, . . . ,Xn. Then there is infinite H ⊆ N
so that [H]k ⊆ Xi for some i .

Proof (k = 3):

Consider α ∈ ∗N \ N
Then 〈α, ∗α, ∗(2)α〉 is in some ∗(3)Xi

So α ∈ ∗{a ∈ N : 〈a, α, ∗α〉 ∈ ∗(2)Xi}.
So {a ∈ N : 〈a, α, ∗α〉 ∈ ∗(2)Xi} is
infinite

Let h0 be the minimum member

Now induct:

Already built Hi = 〈h0, . . . , hi 〉
Inductively, α ∈ ∗{a ∈ N : taa ∈ Xi} for
each t ∈ [Hi ]

2

And α ∈ ∗{a ∈ N : taaaα ∈ ∗Xi} for each
t ∈ [Hi ]

1

Finitely many, and α is in their
nonstandard intersection

So their standard intersection is infinite

Pick hi+1 > hi from that intersection

Finally H = 〈hi 〉 is monochromatic
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Generalizing Ramsey to families of sets of nonuniform size

Definition

The Schreier barrier S consists of all
s ∈ [N]<ω so that |s| = min s + 1.

The first element of s tells you how
long s is

You can think of S as a tagged
amalgamation of (copies of) all [N]k

∅

0

1

2
...

[N \ 2]1

[N \ 3]2
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A Ramsey property for the Schreier barrier

Theorem (Nash-Williams for S)

Partition S into finitely many pieces
X0, . . . ,Xn. Then there is infinite H ⊆ N
so that S � H is monochromatic.

S � H = {s ∈ S : s ⊆ H}
S = {s ∈ [N]<ω : |s| = min s + 1}

For [N]k we looked at what piece of the
partition contained 〈α, ∗α, . . . , ∗(k−1)α〉
But now we don’t know in advance how
long a sequence in S will be

Intuitively, we want to look at

〈α, ∗α, . . . ∗(α)α〉

But this is nonsensical—what would it
even mean to iterate ∗ a nonstandard
number of times?
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A proxy for 〈α, ∗α, . . . ∗(α)α〉
Notation:

?N = dir lim
k∈ω

∗(k)N

For β ∈ ?N, let k(β) be the least k so that β ∈ ∗(k)N

Claim: Fix α ∈ ∗N. For any sequence 〈βi : i ∈ ω〉 there is (a non-unique)∑
α βi ∈ ∗N so that for all X ⊆ N∑

i∈N;α
βi ∈ ∗X ⇔ α ∈ ∗{i ∈ N : βi ∈ ∗(k(βi ))X}

Our proxy for 〈α, ∗α, . . . , ∗(α)α〉 is then

σ(α) =
∑
i∈N;α

〈α, . . . , ∗(i)α〉
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Nash-Williams for S

Theorem (Nash-Williams for S)

Partition S into finitely many pieces
X0, . . . ,Xn. Then there is infinite H ⊆ N
so that S � H is monochromatic.

S � H = {s ∈ S : s ⊆ H}
sk = 〈α, . . . ∗(k)α〉 approximate σ(α)
Proof:

Consider α ∈ ∗N \ N
Then σ(α) is in some ∗Xi

So α ∈ ∗{a ∈ N : aasa ∈ ∗(a)Xi}
Let h0 be the minimum member

Now induct:

Already built Hi = 〈h0, . . . , hi 〉
Inductively, for each t ⊆ Hi with
|t| < min t + 1 we have that
α ∈ ∗{a ∈ N : taaas` ∈ ∗(`)Xi}, for ` the
right length

Finitely many, so α is in their nonstandard
intersection

So their standard intersection is finite

Pick hi+1 > hi from that intersection

Finally H = 〈hi 〉 is monochromatic
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Further generalization: fronts

F ⊆ [N]<ω is a front if

(antichain or Nash-Williams property)
s 6v t for s 6= t from F
(density)
For any infinite b ⊆ N there is s v b from F

Examples:

[N]k for any k

The Schreier barrier S
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Ramsey properties for fronts

To prove a Ramsey property for [N]k and S we had an idea of what a
generic nonstandard member looked like, based on how the front was
built up

〈α, . . . , ∗(k−1)α〉 for [N]k

σ(α), a proxy for 〈α, . . . , ∗(α)α〉 for S

If we want to do the same for an arbitrary front F we need to
understand how F is built up
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Trees of fronts

For F a front, set

T (F) = {t ∈ [N]<ω : t v s for some s ∈ F}

Then T (F) is a tree and F are the leaves

Claim: T (F) is well-founded

If b were an infinite branch through T (F)
it’d extend some s ∈ F by density

But by the Nash-Williams property such s
is unique so b couldn’t be infinite

We can think of F as built up by induction on
T (F)

For s ∈ F , set Fs = {s}
For s ∈ T (F) \ F , set Fs =

⋃
t∈succ s Ft

Here succ s is the set of successors of s in
T (F)

Observe that Fs is a front on [N]<ω � s

Finally F = F∅
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An example: the Schreier barrier

S = {s ∈ [N]<ω : |s| = min s + 1}

T (S) = {t ∈ [N]<ω : t v s for some s ∈ S}
= {t ∈ [N]<ω : |s| ≤ min s + 1}

Ss = {s} if s ∈ S

=
⋃

t∈succ s
Ss if s ∈ T (S) \ S

What is Ss for subsequences s of 〈2, 7, 9〉?

Inductively from the end up:

S〈2,7,9〉 = {〈2, 7, 9〉}
S〈2,7〉 = {〈2, 7, c〉 : 7 < c}
S〈2〉 = {〈2, b, c〉 : 2 < b < c} = {2at :
t ∈ [N \ 3]2}
S = S∅ = {aat : t ∈ [N \ (a + 1)]a}
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The Nash-Williams theorem for Ellentuck space

Theorem (Nash-Williams theorem)

Let F be a front. Partition F into finitely
many pieces X0, . . . ,Xn. Then there is infinite
H ⊆ N so that F � H is monochromatic.

Proof sketch: Fix α ∈ ∗N \ N

The idea is, inductively build up σ∅ = σ∅(α) to
play a similar role as σ(α) did for S:

For s ∈ F , set σs = σs(α) to be 〈α〉
For s ∈ T (F) \ F , set σs = σs(α) to be∑

t∈succ s;α σt(α)

Recall:∑
t∈succ s;α

σt ∈ ∗X ⇔ saα ∈ ∗{a ∈ N : σsaa ∈ ∗X}

σ∅(α) is in some ∗Xi

Pick h0 to be the minimum element of
{a ∈ N : σa ∈ ∗Xi}
Then inductively pick hi+1 > hi using that
α is in ∗{a ∈ N : σtaa ∈ ∗Xi} for each
subset t of the i-th partial solution Hi

Finally H = 〈hi 〉 is monochromatic
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Abstract Ramsey spaces

Ellentuck space E has multiple components

The points are elements of [N]ω

You can associate to each point its k-th
finite approximation in [N]k

There is a partial order ⊆ on points

And E has some nice properties

(A.1) Sequencing: points behave like infinite
sequences

(A.2) Finitization: you can port the partial
order ⊆ to the finite approximations,
and each approximation has a finite
number of predecessors

(A.3) Amalgamation: [this one’s more
technical]

(A.4) Pigeonhole: as it says in the name

A Ramsey space is a tuple (R,AR,≤, r) satisfying (A.1–4) where R are the points,
r : R× ω → AR is the finite approximation map, and ≤ is the partial order
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The topological in topological Ramsey theory

The Ellentuck topology on R is generated by
basic open sets

[a,X ] = {Y ∈ R : Y ≤ X and ∃k rk(Y ) = a}.

If R is closed as a subspace of the product
topology on AR, it’s quite nice

X ⊆ R is Ramsey if you can refine any
basic open set be either contained in or
disjoint from X
X ⊆ R is Ramsey null if it is Ramsey and
you can always refine to be disjoint from
X

If R is closed, any Baire subset is Ramsey
and any meager subset is Ramsey null

Indeed any Souslin-measurable or Borel
subset is Ramsey
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The abstract Nash-Williams theorem

Theorem (Abstract Nash-Williams)

Suppose R is closed. Then any front on the finite
approximations AR satisfies a Ramsey partition property.

I’d like to say our nonstandard proof of the
Nash-Williams theorem extends directly to the full
abstract Nash-Williams theorem

But we need the space to be amenable to nonstandard
methods

And we don’t (yet?) have a proof that this applies to
every nontrivial Ramsey space
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What we do have for the abstract Nash-Williams theorem

Under an extra assumption the nonstandard proof goes through.

Theorem (Partial abstract Nash-Williams)

Consider a front F on AR. Suppose

AR is infinitely branching everywhere; and

There is a filter C on R so that for each s ∈ T (F) \ F the
restriction of succ s to C is a nonprincipal ultrafilter on succ s.

Then F satisfies a Ramsey partition property.

(R,≤) is a poset, so the usual definition of filter applies to C
succ s � X = {t ∈ succ s : ∃k t ≤fin rk(X )}
succ s � C = {succ s � X : X ∈ C}
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Positive examples

Any Ramsey space which can be thought of as its (k + 1)-th approximations
coming from k-th approximations by concatenating sequences from
(cofinite subsets of) a countable alphabet will admit such a filter

Ellentuck space

Restrict any nonprincipal ultrafilter on P(N) to the infinite subsets to
get C

The Milliken space of block sequences

The Hales–Jewett space of variable words

The space Eω(N) of equivalence relations on N with infinite quotients
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A silly negative example

The V space

V has two points, the constant 0 sequence
and the constant 1 sequence

Finite approximations are finite constant 0
or 1 sequences

Trivially, any front on AV satisfies a
Ramsey partition property

But V doesn’t satisfy the filter property!

~0 ~1
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Continuing work

Question

Suppose you have a nontriviala Ramsey space
(R,AR,≤, r) and a front F on AR. Then there is
a filter C on R so that for each s ∈ T (F) \ F the
restriction of succ s to C is a nonprincipal ultrafilter
on succ s.

aWhat should this mean?

(R,≤) is a poset, so the usual definition of
filter applies to C
succ s � X = {t ∈ succ s : ∃k t ≤fin rk(X )}
succ s � C = {succ s � X : X ∈ C}

The abstract Nash-Williams
theorem isn’t the only theorem
in abstract Ramsey theory

What other results are amenable
to nonstandard methods?
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Thank you!
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