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Hey, you got set theory in my computable structure theory!
Hey, you got computable structure theory in my set theory!
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An intuitive sketch of forcing

We want to expand our universe to add a new
object G .

A forcing poset P consists of possible
approximations to G which. The poset
grows downward, with stronger conditions
being lower.

The new object is a generic filter ⊆ P.

G is upward-closed, because if p is an
approximation of G then so is any
weaker condition.
G is directed, because the
approximations must be compatible.
G is generic: it meets every dense D ⊆ P
(D gets below any condition).

Genericity forces G 6∈ V for nontrivial P.

Force CH by adding an ω1-sequence of all
reals.

Use the poset Add(ω1, 1) consisting of
functions α→ 2 for countable α, ordered
by extension: stronger conditions are
longer binary sequences.

G will be an ω1-length binary sequence,
with every real coded at some point.

Directedness is trivial since Add(ω1, 1) is
a tree: G will be a branch.
Genericity ensures every real is coded:
for every x : ω → 2 it is dense to extend
a node to code x .
A closure property ensures no new reals
were added.
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An intuitive sketch of forcing

It’s not enough to add just one new object G , you need to add the rest of the
forcing extension V[G ].

Recursively define P-names, which describe objects in the larger universe.

The generic G says how to interpret names: ẋG is the interpretation of ẋ .

There are definable forcing relations p  ϕ(ẋ , . . .) which control the
behavior of V[G ]:

V[G ] |= ϕ(ẋG , . . .)⇔ ∃p ∈ G p  ϕ(ẋ , . . .)

Can check that forcing always preserves the axioms of ZFC.

Use properties of P to prove more detailed facts about how V and V[G ]
relate.
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An intuitive sketch of forcing

Three main parts of forcing:

Getting a generic G ;

Interpreting the names to build the forcing extension;

Using the forcing relations to determine satisfaction in the forcing
extension.

Important! While G 6∈ V, everything can be described within the
ground model. You don’t have to be a set-theoretic multiversist to
make sense of forcing.
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Forcing is obviously not a computable process

Any computable process takes place entirely in V, so it’s not
possible to produce G .

Indeed, computation is absolute, so anything we could do in V[G ]
must already be in the ground model.

The P-names and forcing relations are defined by transfinite
recursion, and have no hope of being computable.

If you know about the boolean algebra approach to forcing, the same
problems recur.

Building a complete boolean algebra B from a poset P and
building a boolean topos VB from B are both infinitary processes.
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For the titular question to be nontrivial we must
mean something else.
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Countable models of set theory

By the Löwenheim–Skolem theorem, there
are countable models of set theory.

If M is countable and P ∈ M then P is
countable and so the Rasiowa–Sikorski
lemma implies generics for P exist

A countable model M of set theory can be
thought of as ω equipped with a binary
relation ∈M .

This is an appropriate setting for
computable structure theory.

Can formulate questions.
Given M = (ω,∈M) and a poset P ∈ M:

Can we compute a generic G?

Can we compute a representation of the
forcing extension M[G ]?

Can we compute the elementary diagram
of M[G ]?

Warning! No model of set theory can be
computable, so we can only ask about
computability relative to an oracle.
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Computing a generic G

Theorem (Hamkins–Miller–W.)

Given the atomic diagram of M = (ω,∈M)
and a poset P ∈ M you can compute a
generic G for P, given parameters.

The atomic diagram is simply the
relation ∈M .

Literally, P is an integer, not a set of
conditions. Its extension is
P∈ = {n ∈ ω : n ∈M P}, and by
computing G I mean as a subset of
P∈.

Proof: The usual proof of the Rasiowa–Sikorski
is effective.
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Some actual details

Fix a bunch of integers: P, ≤P, 6≤P, ⊥P, D the collection of dense subsets of P.

Can computably enumerate

p0, . . . , pn, . . . all p ∈M P
d0, . . . , dn, . . . all d ∈M D

Now computably enumerate a descending sequence q0 ≥P q1 ≥P · · ·
q0 = p0;

Given qn, step through the pi to find q with op(q, qn) ∈M ≤P and q ∈M dn. Set
the first q you find to be qn+1.

Then G = {p ∈ ω : p ∈M P and op(qn, p) ∈M ≤P for some qn} is computably
enumerable.

But ω \ G = {p ∈ N : ¬(p ∈M P) or op(qn, p) ∈M ⊥P for some qn} is also
computably enumerable. So G is computable.
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What’s up with that non-uniformity?

You may not like that our algorithm required us to fix a bunch of
integers. This isn’t a problem for what is computable (from the atomic
diagram); we may not know which of the many Turing machines
happens to use the right integers, but one of them will.

But this suggests there may be some non-uniformity to the
computation. . .

We’ll come back to this worry at the end.
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What can we compute from the atomic diagram?

The atomic diagram is very weak, and not
a sensible notion of the basic structure of
a model of set theory.

All of the following predicates are not
uniformly r.i.c.e. in the atomic diagram.

x = ∅
x ⊆ y

x is an ordered pair

x is a function

x is an ordinal

x = ω

Theorem (Hamkins–Miller–W.)

Let X be a subset of a model M of set theory.
TFAE

There is a single c.e. operator which takes
the atomic diagram of a presentation of
M and outputs the copy of X for that
presentation. (X is uniformly r.i.c.e. in
the atomic diagram.)

Membership a ∈ X is witnessed by a finite
pattern of ∈ in the transitive closure of a,
with the list of patterns c.e. in the atomic
diagram.
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The Lévy hierarchy

In set theory the natural hierarchy for formulae
is the Lévy hierarchy:

The ∆0 formulae are those whose
quantifiers are all bounded: ∀x ∈ y or
∃x ∈ y .

Inductively build up the Σn and Πn

formulae by adding blocks of unbounded
quantifiers.

∆n means both Σn and Πn.

For M = (ω,∈M) a model of set theory its
∆0-diagram is the restriction of the
elementary diagram to the ∆0 formulae.

And similar for other levels of the
hierarchy.

Σ1 properties are upward absolute: they
are preserved by going up to an
end-extension (an extension that doesn’t
add new elements to old sets).

Π1 properties are downward absolute.

For each n the Σn-satisfaction relation is
Σn-definable.
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The Lévy diagram

Over ω the arithmetical hierarchy of formulae is built by taking
bounded quantifiers to be ∀x ≤ y and ∃x ≤ y .

Lévy ∆0 doesn’t line up with arithmetical ∆0 over M = (ω,∈M),
as the set-theoretic bounded quantifiers are infinitary.

But we can make them line up by using a different diagram.

The Lévy diagram for M = (ω,∈M) is the atomic diagram in the
signature with a relation symbol for every Lévy ∆0 relation over
M.

Arithmetic Σn over the Lévy diagram is equivalent to Lévy Σn

over the ∈-atomic diagram.
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Computing the forcing extension M[G ]

Theorem (Hamkins–Miller–W.)

Take the ∆0-diagram for M = (ω,∈M) as an oracle fix a poset P ∈ M.
Then we can computably produce G an M-generic for P and a copy of
M[G ].

More precisely, we can compute a relation ∈G ⊆ ω2 so that
M[G ] ∼= (ω,∈ M[G ]) and we can compute the canonical embedding
M ↪→ M[G ].
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Computing the forcing extension M[G ]

We already know we can compute G , and
we don’t need parameters because they
can be computed from the ∆0-diagram.

Because the class of P-names is ∆1 it is
computable from the ∆0-diagram.

Similarly we can compute from G and the
∆0-diagram the interpretations of the
names by G .

We can compute the =G equivalence
classes.

Compute a copy of M[G ] by picking the
least integer in each =G class.

Compute ∈M[G ] by computing ∈G .

The P-names are sets whose elements are
of the form
(ẏ , p) where ẏ is a P-name and p ∈ P.

This is a definition by transfinite
recursion, and each step in the recursion is
∆0 so the class of P-names is ∆1.

The interpretation of ẋ by G is

ẋG = {ẏG : ∃p ∈ G (ẏ , p) ∈ ẋ}.

The following relations are ∆1 in G :

ẋ =G ẏ iff ∃p ∈ G p  ẋ = ẏ

ẋ ∈G ẏ iff ∃p ∈ G p  ẋ ∈ ẏ
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Computing the elementary diagram

Theorem (Hamkins–Miller–W.)

Suppose we have the elementary diagram
of M = (ω,∈M) as an oracle and P ∈ M
is a poset. Then we can computably
produce G an M-generic for P and the
elementary diagram of a copy of M[G ].

Proof:

We already know we can compute a copy
of M[G ].

We can compute the elementary diagram
of this copy because the forcing relations
are in the elementary diagram of M.

Important! The map ϕ 7→ “p  ϕ”
sending a formula to the corresponding
forcing relation is computable.
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Computing the elementary diagram level by level

Theorem (Hamkins–Miller–W.)

Suppose we have the Σn-diagram of
M = (ω,∈M) as an oracle and P ∈ M is a
poset. Then we can computably produce
G an M-generic for P and the Σn-diagram
of a copy of M[G ].
The same is true for the ∆0-diagram.

Proof: Because the forcing relations for Σn

formulae are themselves Σn.
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Forcing is a computable procedure

Forcing is a computable procedure, with the level of information given as an
oracle determining what we can compute about the extension.

Given the atomic diagram for M = (ω,∈M) and a poset P ∈ M we can
compute a generic G for P (using parameters).

Given the ∆0-diagram we can moreover compute a copy of the extension
M[G ] and its ∆0-diagram.

Given the Σn-diagram we can compute the Σn-diagram of the extension.

Given the elementary diagram we can compute the elementary diagram of
the extension.
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So about that non-uniformity

The construction of G proceeded by searching through the
conditions in P and the dense subsets of P.

A different presentation of M will give a different order for the
search, and produce a different G .

In general, there will be 2ℵ0 many possible G ’s, so the M[G ] can’t
all be the same.

Altogether this tells us there is a non-uniformity to the process.

Can we get uniformity by a different process?
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Making the notion of uniformity precise: functoriality

For a structure M let Iso(M) denote the
category of isomorphisms of M, with only
isomorphisms as its morphisms.

A process to interpret N in M gives a map
F : Iso(M)→ Iso(N).

If F preserves isomorphisms then it is a
functor.

So asking for a uniform procedure to
construct M[G ] from M amounts to
asking for a functor F : Iso(M)→ Iso(N).

As computable structure theorists we don’t
want just any functor.

A functor F is computable if there is a
Turing functional Φ which given info
about an isomorphism M → M∗ as an
oracle will compute an isomorphism
M[G ]→ M∗[G ∗].

(HTMMM 2017) There is a computable
functor F : Iso(M)→ Iso(N) iff N is
effectively interpretable in M.

(HTMM 2018) If F : Iso(M)→ Iso(N) is
Baire-measurable then there is an
infinitary interpretation I of N in M so
that F is naturally isomorphic to FI .
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Forcing is not a functorial process

Theorem (Hamkins–Miller–W.)

If ZFC is consistent there is M |= ZFC so
that there is no computable functor
Iso(M)→ Iso(M[G ]).

Nonetheless for certain M we can achieve
uniformity.

Theorem (Hamkins–Miller–W.)

If M is a pointwise-definable model of set
theory there is a computable functor
Iso(M)→ Iso(M[G ]), using the full
diagram of M as its info.

Proof sketch: Take M with κ so that
VM

κ ≺ M. Inside M try to run the procedure Φ
on the model VM

κ .

You can’t run the whole procedure, since M
thinks VM

κ is uncountable. But any decision is
made from finite information. So M sees
enough to know whether Φ decides p ∈ G for
each p. As such M has G as an element.

But VM
κ is a rank-initial segment of M so it

has all subsets of P in M. So G is generic for
M, which is impossible for nontrivial G .
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Forcing is not a functorial process

This result can be pushed even further.

Theorem (Schlicht & Hamkins–Miller–W.)

Suppose ZFC is consistent. Then there is no
Borel function mapping presentations of
countable models of set theory to forcing
extensions which preserves isomorphisms.

Indeed, there cannot even be a Borel function
mapping presentations of countable models of
set theory to forcing extensions which preserves
elementary equivalence.

There are limits to how far it can be
pushed.

Observation

Assume V = L. Then there is a ∆1
2

functor mapping presentations of
countable models of set theory to forcing
extensions which preserves isomorphism.

Question

Is there an analytic (co-analytic) functorial
method of producing forcing extensions?
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Is forcing a computable procedure?

Positive results

Given a presentation of a model of set theory we can compute its
forcing extension.

For special models we can do this in a functorial way.

Negative results

But this procedure is in general dependent upon the choice of
presentation.

That is, the procedure is computable in the model of set theory
equipped with an ω-enumeration of its elements, not merely in the
model itself.
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Thank you!
Joel David Hamkins, Russell Miller, and Kameryn J Williams, “Forcing as a
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