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Categoricity in second-order and first-order logic

Second-order logic allows quantifiers over
subsets of the domain, not just elements.

(Dedekind) ω is the unique model of
Peano arithmetic, formulated in
second-order logic.

(Zermelo) The only models of ZF set
theory, formulated in second-order logic,
are Vκ for κ inaccessible.

First-order logic only allows quantifiers over
elements. It cannot have such absolute
categoricity results.

(Löwenheim–Skolem) If a theory T has an
infinite model then T has a model of
every infinite cardinality ≥ |T |.
Trying to run Dedekind’s construction for
M |= PA only gives that ω ↪→M embeds
as an initial segment.

Suppose M |= PA2. We build an isomorphism ω ∼=M:

Map 0 to 0M and recursively map n + 1 to the successor of where you mapped n.

By induction in M the range of this embedding must be all of M.
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Non-categoricity is as bad as possible

Fact

There are continuum many non-isomorphic countable models of Peano
arithmetic.
This remains true if you extend PA to a completion.

If something is impossible, as mathematicians we want to see how
close we can get.

Question

Can we find categoricity-like properties which are enjoyed by the
first-order logic formulations of important foundational theories like PA
or ZF?
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First try: internal categoricity

“Every model of arithmetic which ω can see is isomorphic to it.”

To say what this means we need the notion of an interpretation.
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Interpretations

An interpretation I of a structure N in
M is a collection of formulae which gives
an isomorphic copy of N in M: one
formula for the domain, others for the
functions and relations.

Write M�I N

T �I U on level of theories.

M�par N means parameters are used.

All these relations are pre-orders.

Examples:

R � C but R 6� Z
Vω � ω and ω � Vω

ZFC¬∞ � PA and PA � ZFC¬∞

ZF � ZFC + V = L

ZFC + V = L � ZF

ACA0 � PA but PA 6� ACA0

RCA0 � IΣ1 but IΣ1 6� RCA0

Fact: Doing ZFC¬∞ � PA then PA � ZFC¬∞ or vice versa gives an isomorphism.

But that’s not true for doing ZF � ZFC + V = L then ZFC + V = L � ZF.
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Bi-interpretations

U is a retract of T if

U �I T �J U and J ◦ I is definably
isomorphic to the identity interpretation
on U.

U and T are bi-interpretable if

They are retracts of each other via the
same interpretations.

M�I N �J M∗ =⇒ M∼=J◦I M∗

M�I N �J M∗ =⇒ M∼=J◦I M∗
and
N �J M�I N ∗ =⇒ N ∼=I◦J N ∗

Examples:

ZFC¬∞ and PA are bi-interpretable.

ZFC + V = L is a retract of ZF.

But ZF and ZFC + V = L are not bi-interpretable (Enayat).
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First try: internal categoricity

“Every model of arithmetic which ω can see is isomorphic to it.”

Question

If ω �N must ω ∼= N ?

This is still badly false!

If T ⊇ PA is consistent and arithmetical then ω interprets a
model of T . (Arithmetized Completeness Theorem)

But we avoid loops:

If ω �par N �par ω then N ∼= ω.
(Because a model of arithmetic cannot interpret a shorter model.)
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Solidity

A theory T is solid if

For all models M,M∗,N of T if

M�par N �parM∗ and
There is a parametrically definable
isomorphism M∼=M∗,

Then there is a parametrically definable
isomorphism M∼= N .

Example:

(Visser) PA is solid.

Because the “ω �N � ω implies N ∼= ω”
argument can be made to work over any
M |= PA.

M N M∗

∼=

=⇒M∼= N
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Visser’s theorem in more detail

Theorem (Visser)

PA is solid: for M,M∗,N |= PA if

M�par N �parM∗ and

M∼=parM∗

then M∼=par N .

Lemma: If M�par N are models of PA
then M embeds as an initial segment of
N .

Exactly like the argument that ω is an
initial segment of any model of PA.

Proof Sketch: Suppose i :M→N and
j : N →M∗ are definable initial embeddings
and M∼=parM∗.

Claim: i and j are both surjective.

Else, k = j ◦ i :M→M∗ embeds M
onto a strict initial segment of M∗.
But composing k with the isomorphism
M∗ ∼=M gives a definable cut in M.
This is impossible, since in PA any
bounded definable set has a maximum.

So i is the desired isomorphism.
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Neatness and tightness

T is neat if

Given two extensions U,V of T , if U is a
retract of V then U ⊇ V .

M�I N �J M∗ =⇒ M∼=J◦I M∗

T is tight if

Given two extensions U,V of T , if U and
V are bi-interpretable then U = V .

(U and V must be in the same language as T ,
to avoid boring counterexamples.)

Solidity implies neatness and neatness
implies tightness.

But the converses do not hold.

All of these properties are preserved by
bi-interpretations.

All of these properties are preserved by
adding axioms (in the same language).

These properties are really only interesting
for sequential theories—those which are
subject to the first incompleteness
theorem.

A complete theory such as ACF0 is
trivially neat.
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Positive examples

Theorem

The following theories are all solid, and hence also neat and tight.

(Visser) PA

(Enayat) ZF

(Enayat) Z2, second-order arithmetic with full comprehension

(Enayat) KM, class theory with full comprehension

Question (Enayat): Do we need the full strength of these theories to get
these quasi-categoricity properties?

Recent work (Piotr Gruza, Leszek Ko lodziejczyk, and Mateusz
 Le lyk): No. There are theories intermediate between IΣk and PA which are
solid.
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Recent work (Piotr Gruza, Leszek Ko lodziejczyk, and Mateusz
 Le lyk): No. There are theories intermediate between IΣk and PA which are
solid.
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Negative examples

Theorem

None of the following are tight, and hence are neither neat nor solid.

(Freire–Hamkins) Zermelo set theory

(Freire–Hamkins) ZF−, set theory without Powerset

(Enayat) Finite subtheories of PA, ZF, Z2, or KM

(Freire–W.) ACA and Π1
k -CA, i.e. with full induction but only bounded

comprehension, and the analogous subtheories of KM

These results suggest that tightness characterizes the important
foundational theories like PA and ZF.
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A break for some motivation

“Why should I, someone who’s not interested
in interpretations nor quasi-categoricity, care
about any of this?”

The constructions used are flexible.

They should apply to more than just
mucking about with quasi-categoricity.

To that end, let me sketch the construction for one result, in enough detail to give you an idea
how it might be bent into a new shape.

Theorem

ACA is not tight: there are distinct but bi-interpretable extensions of ACA.

ACA is the subsystem of second-order arithmetic whose primary
axioms are arithmetical comprehension and full induction.

Any ω-model of ACA0 is a model of ACA.
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Identifying the arithmetical sets

(Tarski) 0(ω) is not arithmetical.

(Mostowski) But it is definable over the
arithmetical sets.

Indeed, it has a definition absolute
between all ω-models of ACA (= Turing
ideals closed under jump = X ⊆ P(ω)
closed under arithmetical comprehension).

Thus, any ω-model of ACA can definably
identify which of its sets are arithmetical.

For each k ∈ ω, the k-th jump 0(k) is
arithmetical.

So we can define 0(ω) by identifying which
sets are the 0(k) then gluing them
together.

Key point: The 0(k) are not uniformly
arithmetical, but the property of being a
0(k) is uniformly recognizable.

We just saw a Σ1
1 definition. There’s also

a Π1
1 definition.
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Forcing over the arithmetical sets

We can add a new real by finite
approximations.

C is the poset consisting of finite partial
functions ω → 2, ordered by extension.

A real c ⊆ ω is generic over a Turing ideal
X if it get below every dense set in X .
(D ⊆ C is dense if any p ∈ C extends to
an element of D.)

(Rasiowa–Sikorski) If X is countable you
can always find a generic.

X [c] satisfies ACA if X satisfies ACA.

Fact: Forcing is a computable process: If you
have uniform access to finite jumps of reals in
X you can compute a generic over X .

Given 0(ω) you can compute a generic
over the arithmetical sets.

Since 0(ω) is ∆1
1-definable over any

ω-model of ACA we get that any ω-model
of ACA can define a generic over the
arithmetical sets.

Indeed, they can all define the same
generic, call it c.

Key point: From 0(ω) you can extract a canonical enumeration of the arithmetical sets, and
you use that enumeration to construct c.
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Bi-interpretations

Two structures:

(ω,A) and (ω,A[c])

A is the arithmetical sets.

The two structures are reducts of each
other.

Indeed, it’s a bi-interpretation.

And they have different theories:

A thinks its elements are exactly the
arithmetical sets.

A[c] thinks its elements are exactly the
sets arithmetical in c.

All this can be done on the level of theories.

ACA has full induction, which makes the
arguments about defining 0(ω) and c work,
even over an ω-nonstandard model.

The definitions are sufficiently absolute to
enable a bi-interpretation:

ACA + “I am the arithmetical sets” and
ACA + “I am the sets arithmetical in c”.

Thus, ACA is not tight.
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Generalizing the non-tightness construction

Abstractly, these are the ingredients we need:

A canonical structure;

How to extend this structure;

Everything to be sufficiently absolute;

This can be done on the level of theories.
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Generalizing the non-tightness construction

Abstractly, these are the ingredients we need:

A canonical structure;

How to extend this structure;

Everything to be sufficiently absolute;

This can be done on the level of theories.

For ACA:

The arithmetical sets;

Cohen forcing;

The absoluteness of 0(ω);

Given by the induction schema.
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Generalizing the non-tightness construction

Abstractly, these are the ingredients we need:

A canonical structure;

How to extend this structure;

Everything to be sufficiently absolute;

This can be done on the level of theories.

Can be done for Π1
k -CA:

The minimum β-model of Π1
k -CA;

Cohen forcing;

The absoluteness of L;

A little fine structure theory.
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Generalizing the non-tightness construction

Abstractly, these are the ingredients we need:

A canonical structure;

How to extend this structure;

Everything to be sufficiently absolute;

This can be done on the level of theories.

For class theories T ⊆ KM:

Minimum models again;

Cohen forcing again;

L again;

Fine structure theory again.
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Generalizing the non-tightness construction

Abstractly, these are the ingredients we need:

A canonical structure;

How to extend this structure;

Everything to be sufficiently absolute;

This can be done on the level of theories.

Other uses?

Maybe only need the first three?

Or just two of them?
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Back to Enayat’s conjecture

Conjecture (Enayat)

A theory T of arithmetic is tight if and only if T ⊇ PA.
And similarly for ZF and other important foundational theories.

While we now know the general conjecture to be false (Gruza, Ko lodziejczyk,
and  Le lyk), many natural fragments of PA, etc. fail to be tight.

What makes the construction for the non-tightness of ACA work was:

The arithmetical sets lack semantic closure.
Over them you can define sets which are not arithmetical.

Constructions for other negative results have a similar flavor.

A moral: These categoricity-like properties are characterizing semantic
closure—the limits of definability.
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Some open questions

Is there a finitely axiomatizable sequential tight theory?
(Enayat) No for subtheories of PA and ZF.

Is PA− + Collection tight?
(Enayat –  Le lyk) It is not solid.

Is there an extension of KP which is solid?

Can we better understand the separation between solidity,
neatness, and tightness?

Recent work (Piotr Gruza, Leszek Ko lodziejczyk, and Mateusz
 Le lyk): There are theories intermediate between IΣn and PA which
are neat but not tight.
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Thank you!
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