Infinity, the axiom of choice, and mediacy

Kameryn Julia Williams they/she

Bard College at Simon's Rock

Simon's Rock Mathematics Colloquium 2024 Sept 24

Kameryn Julia Williams (BCSR)

Infinity, the axiom of choice, and mediacy

SR Math Colloquium (2024 Sept 24) 1 / 34

A question to the audience:

What does it mean to be infinite?

- 32

Sac

A question to the audience:

What does it mean to be infinite?

What does it mean to be finite?

Kameryn Julia Williams (BCSR)

SR Math Colloquium (2024 Sept 24) 2 / 34

- B

Sac

A question to the audience:

What does it mean to be infinite?

What does it mean to be finite?

- We're talking about discrete collections, not continuous quantities.
- That is, we're talking about what a mathematician would call a set.

Some terminology first

A function or mapping is a way of associating values to elements of a set.

Write f : X → Y to mean that f is a function mapping elements of X to elements of Y.

- 3

メロト メポト メヨト メヨト

Some terminology first

A function or mapping is a way of associating values to elements of a set.

Write f : X → Y to mean that f is a function mapping elements of X to elements of Y.

- If different inputs go to different outputs *f* is injective.
- If no output is missed f is surjective.
- If both *f* is bijective.

Many answers

X is infinite if...

۹

X is finite if. . .

•

Kameryn Julia Williams (BCSR)

Infinity, the axiom of choice, and mediacy

SR Math Colloquium (2024 Sept 24) 4 / 34

3

Sac

Many answers

X is infinite if. . .

- For every $n \in \mathbb{N}$ there's an injection $\{0, 1, \dots, n-1\}.$
- There's an injective, non-surjective map $X \to X$.
- You can order X to have either no minimum or no maximum.
- There's a nonempty collection of subsets of X with no maximal element.
- X can be split into two pieces each of which has the same size as X.
- There is a bijection $X \to X \times X$.

X is finite if. . .

- There is bijective $\{0, 1, \ldots, n-1\} \to X$ for some $n \in \mathbb{N}$.
- Any injective $X \to X$ is bijective.
- Any linear order on X has both a minimum and a maximum.
- Any nonempty collection of subsets of X has a maximal element.
- If you split X into two pieces then both pieces are smaller than X.
- The square $X \times X$ is bigger than X.

3

Many answers

X is infinite if...

- For every $n \in \mathbb{N}$ there's an injection $\{0, 1, \dots, n-1\}.$
- There's an injective, non-surjective map $X \to X$.
- You can order X to have either no minimum or no maximum.
- There's a nonempty collection of subsets of X with no maximal element.
- X can be split into two pieces each of which has the same size as X.
- There is a bijection $X \to X \times X$.

X is finite if...

- There is bijective $\{0, 1, \ldots, n-1\} \to X$ for some $n \in \mathbb{N}$.
- Any injective $X \to X$ is bijective.
- Any linear order on X has both a minimum and a maximum.
- Any nonempty collection of subsets of X has a maximal element.
- If you split X into two pieces then both pieces are smaller than X.
- The square $X \times X$ is bigger than X.

- B

Are these answers all the same?

Kameryn Julia Williams (BCSR)

Infinity, the axiom of choice, and mediacy

SR Math Colloquium (2024 Sept 24) 5 / 34

Э

Sac

Dedekind's analysis

Richard Dedekind gave an analysis in *Was sind und was sollen die Zahlen?* (1888):

- X is infinite if there is an injective but non-surjective $f : X \to X$.
- X is finite if any injective f : X → X must be surjective.

3

Dedekind's analysis

Richard Dedekind gave an analysis in *Was sind* **F** *und was sollen die Zahlen?* (1888): o

- X is infinite if there is an injective but non-surjective $f : X \to X$.
- X is finite if any injective f : X → X must be surjective.

Proposition: X is Dedekind-infinite if and only if there is injective $g : \mathbb{N} \to X$.

Dedekind's analysis

Richard Dedekind gave an analysis in *Was sind und was sollen die Zahlen?* (1888):

- X is infinite if there is an injective but non-surjective $f : X \to X$.
- X is finite if any injective f : X → X must be surjective.

Proposition: X is Dedekind-infinite if and only if there is injective $g : \mathbb{N} \to X$.

- (\Leftarrow) Push forward the +1 map to get an injective non-surjective $f : X \to X$.
- (\Rightarrow) Pick $z \in X \setminus \text{ran } f$ to be zero, and 'plus one' is applying f.

Dedekind-infinite \Rightarrow infinite

Kameryn Julia Williams (BCSR)

Infinity, the axiom of choice, and mediacy

SR Math Colloquium (2024 Sept 24) 7 / 34

- 32

Sac

・ロト ・ 同ト ・ ヨト ・ ヨト

Dedekind-infinite \Rightarrow infinite

- If X is Dedekind-infinite,
- then there is injective $g:\mathbb{N}\to X$,
- so restricting g to $\{0, 1, \dots, n-1\}$ gives an injection,
- so X has at least n elements, for any $n \in \mathbb{N}$.

This one's a little harder.

Kameryn Julia Williams (BCSR)

Infinity, the axiom of choice, and mediacy

SR Math Colloquium (2024 Sept 24) 8 / 34

3

Sac

This one's a little harder.

- Choose an injection $f_n: \{0, \ldots, n-1\} \to X$ for every n.
- Now inductively build an injection $g:\mathbb{N}\to X$:
 - At stage *n* we've already decided the first *n* values for *g*.
 - To decide where to send n, look at f_{n+1} , which has n+1 many values.
 - So we're guaranteed to have an unused value. Choose one to send *n* to.

イロト 不得 トイヨト イヨト 二日

This one's a little harder.

- Choose an injection $f_n : \{0, \ldots, n-1\} \to X$ for every n.
- Now inductively build an injection $g:\mathbb{N}\to X$:
 - At stage *n* we've already decided the first *n* values for *g*.
 - To decide where to send n, look at f_{n+1} , which has n+1 many values.
 - So we're guaranteed to have an unused value. Choose one to send *n* to.

イロト 不得 トイヨト イヨト 二日

This one's a little harder.

- Choose an injection $f_n : \{0, \ldots, n-1\} \to X$ for every n.
- Now inductively build an injection $g:\mathbb{N}\to X$:
 - At stage *n* we've already decided the first *n* values for *g*.
 - To decide where to send n, look at f_{n+1} , which has n+1 many values.
 - So we're guaranteed to have an unused value. Choose one to send *n* to.

How do we make these choices?

Dac

イロト イヨト イヨト

The axiom of choice

You can make arbitrary choices, even if you need to make infinitely many at a time.

3

Sac

The axiom of choice

You can make arbitrary choices, even if you need to make infinitely many at a time.

Bertrand Russell

"If you have infinitely many pairs of shoes you can pick a shoe from each pair by always grabbing the left, but if you have infinitely many pairs of socks how do you pick from each pair?"

The axiom of choice

You can make arbitrary choices, even if you need to make infinitely many at a time.

Bertrand Russell

"If you have infinitely many pairs of shoes you can pick a shoe from each pair by always grabbing the left, but if you have infinitely many pairs of socks how do you pick from each pair?"

Mathematically: if you have a rule to specify how to choose, you can always do that.

- If you have a bunch of sets of natural numbers, your rule can be to always pick the smallest number in each.
- If you have a bunch of open intervals (*a*, *b*), your rule can be to always pick the midpoint in each.

It's only when you don't have a rule that it's dicey.

• Challenge: Give a rule that tells you how to choose a number from *any* set of real numbers.

The axiom of choice, formally

- Let X be a set whose elements are (nonempty) sets.
- A choice function on X is a function c with domain X so that c(x) ∈ x for every x ∈ X.
- The sets in X are the options for each of the choices, and c tells you what to choose for each.
- The axiom of choice says that every such X has a choice function.

The axiom of choice, formally

- Let X be a set whose elements are (nonempty) sets.
- A choice function on X is a function c with domain X so that c(x) ∈ x for every x ∈ X.
- The sets in X are the options for each of the choices, and c tells you what to choose for each.

The axiom of choice says that every such X has a choice function.

Often we can explicitly define a choice function, and so we don't need to use the axiom of choice to know it exists.

- If X consists of subsets x of \mathbb{N} , then $c(x) = \min x$ is a choice function for X.
- If X consists of open intervals (a, b) inside ℝ, then c((a, b)) = (a + b)/2 is a choice function for X.

The axiom of choice says we have a choice function even if we don't see how to define one.

3

• Ernst Zermelo introduced the axiom of choice in 1904. He gave it as a basic logical principle used in the proof of his well-ordering theorem.

- Ernst Zermelo introduced the axiom of choice in 1904. He gave it as a basic logical principle used in the proof of his well-ordering theorem.
- This made a lot of people angry.

(I)

- Ernst Zermelo introduced the axiom of choice in 1904. He gave it as a basic logical principle used in the proof of his well-ordering theorem.
- This made a lot of people angry.
- Among the prominent opponents were the French analysts René-Louis Baire, Émile Borel, and Henri Lebesgue.
- The big critique was that the axiom of choice is non-constructive.

▲ 同 ▶ → ● 三

- Ernst Zermelo introduced the axiom of choice in 1904. He gave it as a basic logical principle used in the proof of his well-ordering theorem.
- This made a lot of people angry.
- Among the prominent opponents were the French analysts René-Louis Baire, Émile Borel, and Henri Lebesgue.
- The big critique was that the axiom of choice is non-constructive.
- Other mathematicians, such as Jacques Hadamard, defended Zermelo's axiom as a legitimate mathematical principle.

< (P) > < E

- Ernst Zermelo introduced the axiom of choice in 1904. He gave it as a basic logical principle used in the proof of his well-ordering theorem.
- This made a lot of people angry.
- Among the prominent opponents were the French analysts René-Louis Baire, Émile Borel, and Henri Lebesgue.
- The big critique was that the axiom of choice is non-constructive.
- Other mathematicians, such as Jacques Hadamard, defended Zermelo's axiom as a legitimate mathematical principle.
- And it turned out the analyst trio had used non-constructive principles in their own work.

Many equivalences

The following are each equivalent to the axiom of choice:

- (Zermelo 1904) Zermelo's well-ordering theorem;
- (Hausdorff 1914) The Hausdorff maximal principle for partial orders;
- (Kuratowski 1922) Zorn's lemma;
- (Tarski 1924) If X is infinite there is a bijection $X \to X^2$;
- (Kelley 1950) Tychonoff's theorem on the product of topological spaces;
- (Hodges 1979) Krull's theorem about maximal ideals of rings;
- (Blass 1984) Every vector space has a basis.

Aside: A small case in the larger controversy

"Tarski told me the following story. He tried to publish his theorem [that the axiom of choice is equivalent to there being a bijection $X \rightarrow X^2$ for every infinite X] in the *Comptes Rendus Acad. Sci. Paris* but Fréchet and Lebesgue refused to present it. Fréchet wrote that an implication between two well known propositions is not a new result. Lebesgue wrote that an implication between two false propositions is of no interest. And Tarski said that after this misadventure he never tried to publish in the *Comptes Rendus.*"

—Jan Mycielski, on p. 209 of "A system of axioms of set theory for the rationalists" (2006).

This was our proof:

- Choose an injection
 - $f_n: \{0, \ldots, n-1\} \to X$ for every n.
- Now inductively build an injection $g: \mathbb{N} \to X$:
 - At stage *n* we've already decided the first *n* values for *g*.
 - To decide where to send n, look at f_{n+1} , which has n + 1 many values.
 - So we're guaranteed to have an unused value. Choose one to send *n* to.

Can we give rules for how to make those choices? If so, we know we didn't need the axiom of choice.

(I)

This was our proof:

• Choose an injection

 $f_n: \{0, \ldots, n-1\} \to X$ for every n.

• Now inductively build an injection $g: \mathbb{N} \to X$:

The second choice:

- We need to pick an unused value in the range of f_{n+1} . Pick the one coming from the smallest i < n+1.
- At stage *n* we've already decided the first The first choice: *n* values for *g*.
- To decide where to send n, look at f_{n+1} , which has n+1 many values.
- So we're guaranteed to have an unused value. Choose one to send *n* to.

Can we give rules for how to make those choices? If so, we know we didn't need the axiom of choice.

This was our proof:

Choose an injection

 $f_n: \{0,\ldots,n-1\} \to X$ for every n.

- Now inductively build an injection $g:\mathbb{N}\to X$:
 - At stage *n* we've already decided the first The first choice: *n* values for g. • 7777
 - To decide where to send n, look at f_{n+1} , which has n + 1 many values.
 - So we're guaranteed to have an unused value. Choose one to send *n* to.

Can we give rules for how to make those choices? If so, we know we didn't need the axiom of choice

The second choice:

- We need to pick an unused value in the range of f_{n+1} . Pick the one coming from the smallest i < n + 1.
- If we knew a lot about what X looks like. we might be able to do it. But all we know is that X is infinite.

This was our proof:

Choose an injection

 $f_n: \{0,\ldots,n-1\} \to X$ for every n.

- Now inductively build an injection $g:\mathbb{N}\to X$:
 - At stage *n* we've already decided the first The first choice: *n* values for g. • 7777
 - To decide where to send n, look at f_{n+1} , which has n + 1 many values.
 - So we're guaranteed to have an unused value. Choose one to send *n* to.

Can we give rules for how to make those choices? If so, we know we didn't need the axiom of choice

The second choice:

- We need to pick an unused value in the range of f_{n+1} . Pick the one coming from the smallest i < n + 1.
- If we knew a lot about what X looks like. we might be able to do it. But all we know is that X is infinite.

Not seeing what to do isn't the same as proof of impossibility, however.

How could we possibly prove that something requires the axiom of choice?

Kameryn Julia Williams (BCSR)

Infinity, the axiom of choice, and mediacy

SR Math Colloquium (2024 Sept 24) 15 / 34

3

メロト メポト メヨト メヨト

Kameryn Julia Williams (BCSR)

Infinity, the axiom of choice, and mediacy

SR Math Colloquium (2024 Sept 24) 16 / 34

э

Sac

- A parallel situation in geometry:
 - One of Euclid's axioms was his parallel postulate.
 - Many mathematicians thought the parallel postulate should be a theorem of the other axioms, and they worked really hard to try to prove it.

A parallel situation in geometry:

- One of Euclid's axioms was his parallel postulate.
- Many mathematicians thought the parallel postulate should be a theorem of the other axioms, and they worked really hard to try to prove it.
- But no one succeeded.
- Circa 1830 Nikolai Lobachevsky and János Bolyai independently discovered there are geometric universes where the other axioms are true but the parallel postulate is false.
- Today non-euclidean geometries like hyperbolic geometry and elliptic geometry continue to enjoy study.

・ロト ・通ト ・ヨト ・ヨト

- A parallel situation in geometry:
 - One of Euclid's axioms was his parallel postulate.
 - Many mathematicians thought the parallel postulate should be a theorem of the other axioms, and they worked really hard to try to prove it.
 - But no one succeeded.
 - Circa 1830 Nikolai Lobachevsky and János Bolyai independently discovered there are geometric universes where the other axioms are true but the parallel postulate is false.
 - Today non-euclidean geometries like hyperbolic geometry and elliptic geometry continue to enjoy study.

Can you prove the axiom of choice as a theorem, assuming other basic axioms of set theory?

・ロト ・通ト ・ヨト ・ヨト

Some more history

- (1938) Kurt Gödel proved that the axiom of choice is consistent with the other axioms. You cannot prove it is false.
- His proof goes through a highly structured mathematical universe, the constructible universe, where you can define a global choice function—a choice function that works for every set simultaneously.

Some more history

- (1938) Kurt Gödel proved that the axiom of choice is consistent with the other axioms. You cannot prove it is false.
- His proof goes through a highly structured mathematical universe, the constructible universe, where you can define a global choice function—a choice function that works for every set simultaneously.
- (1963) Paul Cohen proved that the failure of the axiom of choice is consistent with the other axioms. You cannot prove it is true.
- Altogether, the axiom of choice is independent of the other axioms.
- Cohen's proof introduced the method of forcing, a flexible technique for building new universes of mathematics.

・ロト ・通ト ・ヨト ・ヨト

Cohen constructed multiple universes where the axiom of choice fails.

• In Cohen's first model, there is an infinite yet Dedekind-finite set of reals.

3

Cohen constructed multiple universes where the axiom of choice fails.

- In Cohen's first model, there is an infinite yet Dedekind-finite set of reals.
- In another of his universes there is an amorphous set of reals—an infinite set whose subsets are all finite or complements of a finite set.

3

Cohen constructed multiple universes where the axiom of choice fails.

- In Cohen's first model, there is an infinite yet Dedekind-finite set of reals.
- In another of his universes there is an amorphous set of reals—an infinite set whose subsets are all finite or complements of a finite set.
- Later mathematicians built on these ideas to construct yet more universes where the axiom of choice fails in exciting ways.

- There are universes of mathematics where AC is false and basic analysis facts—e.g. the Baire category theorem, properties of the Borel sets, and properties of the Lebesgue integral—are also false.
- On the other hand, we know a weak fragment of the axiom of choice known as the principle of dependent choices is enough to prove these basic facts.
- For those who have heard of the Banach–Tarski paradox: in 1970 Robert Solovay constructed a universe where the principle of dependent choices is true and every set of reals is Lebesgue measurable.

This was our proof:

• Choose an injection

 $f_n: \{0, \ldots, n-1\} \to X$ for every n.

- Now inductively build an injection $g: \mathbb{N} \to X$:
 - At stage *n* we've already decided the first *n* values for *g*.
 - To decide where to send n, look at f_{n+1} , which has n + 1 many values.
 - So we're guaranteed to have an unused value. Choose one to send *n* to.

We saw we could define how to do the second choice, but we couldn't see a way to define how to do the first choice.

This was our proof:

• Choose an injection

 $f_n: \{0, \ldots, n-1\} \to X$ for every n.

- Now inductively build an injection $g: \mathbb{N} \to X$:
 - At stage *n* we've already decided the first *n* values for *g*.
 - To decide where to send n, look at f_{n+1} , which has n + 1 many values.
 - So we're guaranteed to have an unused value. Choose one to send *n* to.

We saw we could define how to do the second choice, but we couldn't see a way to define how to do the first choice. It follows from Cohen's work that there isn't a way to define it.

- If you could, then you would have the theorem without needing the axiom of choice.
- But Cohen proved it's consistent to have an infinite set which is Dedekind-finite.

Did we stumble upon another equivalence to the axiom of choice? Is "every infinite set is Dedekind-infinite" equivalent to AC?

Did we stumble upon another equivalence to the axiom of choice? Is "every infinite set is Dedekind-infinite" equivalent to AC?

The answer is no:

- One can check that the principle of dependent choices is enough to prove the implication.
- But set theorists know that the principle of dependent choices is weaker than the full axiom of choice: there are mathematical universes where DC is true but AC is false.
- So there are universes where the axiom of choice is false but every infinite set is Dedekind-infinite.

Intuition: This is a local fact, while the axiom of choice is a global principle.

Question

Is there a suitable generalization of the notion of an infinite Dedekind-finite set whose nonexistence gives a characterization of AC?

Kameryn Julia Williams (BCSR)

SR Math Colloquium (2024 Sept 24) 21 / 34

3

Even more history

- What we've seen about infinite Dedekind-finite sets is, under other language, the state of the art for the first decade of AC's life.
- Mathematics is still awaiting Cohen to settle for certain that the axiom of choice is needed for the proof, but everyone conjectures it is.

Even more history

- What we've seen about infinite Dedekind-finite sets is, under other language, the state of the art for the first decade of AC's life.
- Mathematics is still awaiting Cohen to settle for certain that the axiom of choice is needed for the proof, but everyone conjectures it is.
- In the late 1910s, Bertrand Russell is a few years after the last volume of his epic *Principia Mathematica*. His time is occupied by legal troubles over his pacifism during World War I and thinking about the foundations of mathematics.
- Working with him are multiple students, including Dorothy Wrinch.
- The next decade (1923) she will publish a paper answering our question.

Dorothy Wrinch

- Born 1894, died 1976.
- Studied logic under Russell, did her doctorate (1921) under applied mathematician John Nicholson.
- Wrote in a range of subjects: logic, pure mathematics, philosophy of science, and mathematical biology.
- Was awarded a Rockefeller Foundation fellowship to support her work in mathematical biology.
- Early career was in the UK, later emigrated to the USA. Latter years of her career were at Smith College (Mass, USA).
- Had the misfortune of being on the losing side of a scientific dispute with Linus Pauling over the structure of proteins.

・ロト ・通ト ・ヨト ・ヨト

Mediate sets

Some notation for sets X and Y:

- Write $X \leq Y$ if there is an injection $X \rightarrow Y$;
- Write $X \approx Y$ if there a bijection $X \rightarrow Y$;
- Write X < Y if $X \leq Y$ but $X \not\approx Y$.

Mediate sets

Some notation for sets X and Y:

- Write $X \leq Y$ if there is an injection $X \rightarrow Y$;
- Write $X \approx Y$ if there a bijection $X \rightarrow Y$;
- Write X < Y if $X \leq Y$ but $X \not\approx Y$.

Fix a set D. Then X is D-mediate if

- Whenever Y < D then $Y \leq X$;
- But neither $D \leq X$ nor $X \leq D$

We call D the degree of mediacy for X. A set is mediate if it is D-mediate for some D.

Mediate sets

Some notation for sets X and Y:

- Write $X \leq Y$ if there is an injection $X \rightarrow Y$;
- Write $X \approx Y$ if there a bijection $X \rightarrow Y$;
- Write X < Y if $X \leq Y$ but $X \not\approx Y$.

Fix a set D. Then X is D-mediate if

- Whenever Y < D then $Y \leq X$;
- But neither $D \leq X$ nor $X \leq D$

We call D the degree of mediacy for X. A set is mediate if it is D-mediate for some D.

This generalizes the notion of a set which is infinite but Dedekind-finite.

- "X is ℕ-mediate" is a rephrasing of "X is infinite and Dedekind-finite".
- The principle "every infinite set is Dedekind-infinite" can be rephrased "there are no ℕ-mediate sets".

- B

イロト イヨト イヨト

A basic fact

Definition

Fix a set *D*. Then *X* is *D*-mediate if

- Whenever Y < D then $Y \leq X$;
- But neither $D \le X$ nor $X \le D$

- You can prove-without the axiom of choice—that there are no finite degrees of mediacy.
- Use induction to prove that for every $n \in \mathbb{N}$ if there is no injection $X \to \{0, 1, \dots, n-1\}$ then there is an injection $\{0, 1, \dots, n-1\} \to X$.
- So the second clause of *D*-mediacy can never be true when *D* is finite.

The upshot: mediacy is only about infinite sets, the best kind of sets.

3

イロト イヨト イヨト

Wrinch's theorem

Theorem (Wrinch 1923)

Over the basic axioms of set theory, the following are equivalent.

AC; and

- 2 There are no mediate sets.
- Wrinch originally formulated this result in the framework of *Principia Mathematica*.
- Her same proof goes through in modern frameworks.

Wrinch's theorem, $(1 \Rightarrow 2)$

Theorem (Wrinch 1923)

Over the basic axioms of set theory, the following are equivalent.

- AC; and
- 2 There are no mediate sets.

Definition

Fix a set D. Then X is D-mediate if

- Whenever Y < D then $Y \leq X$;
- But neither $D \leq X$ nor $X \leq D$

Prove $(1 \Rightarrow 2)$ by contrapositive.

Wrinch's theorem, $(1 \Rightarrow 2)$

Theorem (Wrinch 1923)

Over the basic axioms of set theory, the following are equivalent.

- AC; and
- 2 There are no mediate sets.

Definition

Fix a set D. Then X is D-mediate if

- Whenever Y < D then $Y \leq X$;
- But neither $D \leq X$ nor $X \leq D$

Prove $(1 \Rightarrow 2)$ by contrapositive. *Proof sketch:*

- Suppose X is D-mediate.
- In particular, neither $X \leq D$ nor $D \leq X$.
- So the principle of Cardinal Trichotomy fails.

Wrinch's theorem, $(1 \Rightarrow 2)$

Theorem (Wrinch 1923)

Over the basic axioms of set theory, the following are equivalent.

- AC; and
- 2 There are no mediate sets.

Definition

Fix a set D. Then X is D-mediate if

- Whenever Y < D then $Y \leq X$;
- But neither $D \leq X$ nor $X \leq D$

Prove $(1 \Rightarrow 2)$ by contrapositive. *Proof sketch:*

- Suppose X is D-mediate.
- In particular, neither $X \leq D$ nor $D \leq X$.
- So the principle of Cardinal Trichotomy fails.
- (Hartogs 1915) The axiom of choice is equivalent to Cardinal Trichotomy.
- So the axiom of choice fails.

イロト イヨト イヨト

Wrinch's theorem, $(2 \Rightarrow 1)$

Theorem (Wrinch 1923)

Over the basic axioms of set theory, the following are equivalent.

- AC; and
- 2 There are no mediate sets.

Definition

Fix a set D. Then X is D-mediate if

- Whenever Y < D then $Y \leq X$;
- But neither $D \leq X$ nor $X \leq D$

Prove (2 \Rightarrow 1) by contrapositive.

イロト イヨト イヨト

Wrinch's theorem, $(2 \Rightarrow 1)$

Theorem (Wrinch 1923)

Over the basic axioms of set theory, the following are equivalent.

- AC; and
- 2 There are no mediate sets.

Definition

Fix a set D. Then X is D-mediate if

- Whenever Y < D then $Y \leq X$;
- But neither $D \leq X$ nor $X \leq D$

Prove $(2 \Rightarrow 1)$ by contrapositive. *Proof sketch:*

- (Hartogs) For any set X there is a smallest ordinal ℵ(X) so that there is no injection ℵ(X) → X.
- If X is not well-orderable then X is $\aleph(X)$ -mediate.
- Because the axiom of choice is equivalent to Zermelo's theorem that every set is well-orderable,
- If the axiom of choice fails there is a mediate set.

A second question

We know a lot more about the axiom of choice than was state of the art in Wrinch's day. Can we prove a better theorem?

Question

For which sets D is it consistent for there to be a D-mediate set?

We know \mathbb{N} is possible. Any others?

Lévy's theorem

Theorem (Azriel Lévy (1964); independently W.)

Suppose there is a bijection from D to a regular ordinal. Then there is a universe in which there is a D-mediate set.

- An ordinal is morally a well-ordered set.
- An ordinal κ is regular if there is no cofinal map from a smaller ordinal to κ.

イロト イヨト イヨト

Lévy's theorem, stated more precisely

Theorem (Azriel Lévy (1964); independently W.)

Suppose $\kappa = \kappa^{<\kappa}$ is regular. In the symmetric extension obtained from the forcing $Add(\kappa, \kappa)$ by restricting to conditions which are hereditarily symmetric under permutations of the generics which fix $< \kappa$ many points, the following are true:

- DC<κ;
- κ is the smallest degree of mediacy.

Those other notions of finiteness

Way back on slide 4 I gave a big list of different ways of defining finiteness (complementarily, infiniteness). We then ignored most of them to look only at Dedekind's.

• What about the others?

Those other notions of finiteness

Way back on slide 4 I gave a big list of different ways of defining finiteness (complementarily, infiniteness). We then ignored most of them to look only at Dedekind's.

• What about the others?

Theorem (Lévy 1958)

Without assuming you the axiom of choice you cannot prove the equivalence of many various definitions of finiteness.

A question

Question

For Dedekind's characterization of finiteness, Wrinch gave a generalization which enabled an equivalence to the axiom of choice. Can a similar analysis be done for other characterizations?

3

イロト イヨト イヨト

Thank you!

- Dorothy Wrinch, "On mediate cardinals", American Journal of Mathematics, Vol. 45, No. 2. (1923). pp. 87–92.
 DOI: 10.2307/2370490.
- Kameryn Julia Williams, "Mediate cardinals: old and new", In preparation.
- Azriel Lévy, "The independence of various definitions of finiteness", *Fundamenta Mathematicae*, Vol. 46, No. 1. (1958). pp. 1–13.
 DOI: 10.4064/fm-46-1-1-13
- Azriel Lévy, "The interdependence of certain consequences of the axiom of choice", *Fundamenta Mathematicae*, Vol. 54, No. 2. (1964). pp. 135–157.
 DOI: 10.4064/fm-54-2-135-157
- Landon D.C. Elkind, "I like her very much—she has very good brains.": Dorothy Wrinch's Influence on Bertrand Russell, In: *Bertrand Russell, Feminism, and Women Philosophers in his Circle*, eds. Elkind & Klein. (2024). pp. 259–297. URL: link.springer.com/chapter/10.1007/978-3-031-33026-1_10