
Δ
What is a triangle?

Astra Kolomatskaia

jww Mike Shulman

1
Introduction

Kindergarten Shapes

cube simplex globe

Semi-Simplicial Types

First, a type 𝐴0 of points
𝐴0 ∶ Type

Second, for every two points 𝑥, 𝑦 ∶ 𝐴0, a type 𝐴1 𝑥 𝑦 of lines joining 𝑥 and 𝑦

𝐴1 ∶ (𝑥 ∶ 𝐴0) (𝑦 ∶ 𝐴0) → Type

Third, for every three points 𝑥, 𝑦, 𝑧 ∶ 𝐴0 and three lines 𝛼 ∶ 𝐴1 𝑥 𝑦, 𝛽 ∶ 𝐴1 𝑥 𝑧,
and 𝛾 ∶ 𝐴1 𝑦 𝑧, a type 𝐴2 𝑥 𝑦 𝛼 𝑧 𝛽 𝛾 of triangles with the given boundary

𝐴2 ∶ (𝑥 ∶ 𝐴0) (𝑦 ∶ 𝐴0) (𝛼 ∶ 𝐴1 𝑥 𝑦) (𝑧 ∶ 𝐴0) (𝛽 ∶ 𝐴1 𝑥 𝑧) (𝛾 ∶ 𝐴1 𝑦 𝑧) → Type

Semi-Simplicial Types

First, a type 𝐴0 of points
𝐴0 ∶ Type

Second, for every two points 𝑥, 𝑦 ∶ 𝐴0, a type 𝐴1 𝑥 𝑦 of lines joining 𝑥 and 𝑦

𝐴1 ∶ (𝑥 ∶ 𝐴0) (𝑦 ∶ 𝐴0) → Type

Third, for every three points 𝑥, 𝑦, 𝑧 ∶ 𝐴0 and three lines 𝛼 ∶ 𝐴1 𝑥 𝑦, 𝛽 ∶ 𝐴1 𝑥 𝑧,
and 𝛾 ∶ 𝐴1 𝑦 𝑧, a type 𝐴2 𝑥 𝑦 𝛼 𝑧 𝛽 𝛾 of triangles with the given boundary

𝐴2 ∶ (𝑥 ∶ 𝐴0) (𝑦 ∶ 𝐴0) (𝛼 ∶ 𝐴1 𝑥 𝑦) (𝑧 ∶ 𝐴0) (𝛽 ∶ 𝐴1 𝑥 𝑧) (𝛾 ∶ 𝐴1 𝑦 𝑧) → Type

Semi-Simplicial Types

First, a type 𝐴0 of points
𝐴0 ∶ Type

Second, for every two points 𝑥, 𝑦 ∶ 𝐴0, a type 𝐴1 𝑥 𝑦 of lines joining 𝑥 and 𝑦

𝐴1 ∶ (𝑥 ∶ 𝐴0) (𝑦 ∶ 𝐴0) → Type

Third, for every three points 𝑥, 𝑦, 𝑧 ∶ 𝐴0 and three lines 𝛼 ∶ 𝐴1 𝑥 𝑦, 𝛽 ∶ 𝐴1 𝑥 𝑧,
and 𝛾 ∶ 𝐴1 𝑦 𝑧, a type 𝐴2 𝑥 𝑦 𝛼 𝑧 𝛽 𝛾 of triangles with the given boundary

𝐴2 ∶ (𝑥 ∶ 𝐴0) (𝑦 ∶ 𝐴0) (𝛼 ∶ 𝐴1 𝑥 𝑦) (𝑧 ∶ 𝐴0) (𝛽 ∶ 𝐴1 𝑥 𝑧) (𝛾 ∶ 𝐴1 𝑦 𝑧) → Type

Semi-Simplicial Types [cont.]
A SST consists of an infinite list of the data that starts off as follows:
𝐴0 ∶ Type

𝐴1 ∶ (𝑥01 ∶ 𝐴0) (𝑥10 ∶ 𝐴0) → Type

𝐴2 ∶ (𝑥001 ∶ 𝐴0) (𝑥010 ∶ 𝐴0) (𝛽011 ∶ 𝐴1 𝑥001 𝑥010) (𝑥100 ∶ 𝐴0) (𝛽101 ∶ 𝐴1 𝑥001 𝑥100)
(𝛽110 ∶ 𝐴1 𝑥010 𝑥100) → Type

𝐴3 ∶ (𝑥0001 ∶ 𝐴0) (𝑥0010 ∶ 𝐴0) (𝛽0011 ∶ 𝐴1 𝑥0001 𝑥0010) (𝑥0100 ∶ 𝐴0) (𝛽0101 ∶ 𝐴1 𝑥0001 𝑥0100)
(𝛽0110 ∶ 𝐴1 𝑥0010 𝑥0100) (𝔣0111 ∶ 𝐴2 𝑥0001 𝑥0010 𝛽0011 𝑥0100 𝛽0101 𝛽0110) (𝑥1000 ∶ 𝐴0)
(𝛽1001 ∶ 𝐴1 𝑥0001 𝑥1000) (𝛽1010 ∶ 𝐴1 𝑥0010 𝑥1000) (𝔣1011 ∶ 𝐴2 𝑥0001 𝑥0010 𝛽0011 𝑥1000 𝛽1001 𝛽1010)
(𝛽1100 ∶ 𝐴1 𝑥0100 𝑥1000) (𝔣1101 ∶ 𝐴2 𝑥0001 𝑥0100 𝛽0101 𝑥1000 𝛽1001 𝛽1100)
(𝔣1110 ∶ 𝐴2 𝑥0010 𝑥0100 𝛽0110 𝑥1000 𝛽1010 𝛽1100) → Type

…

Semi-Simplicial Types [cont.]
A SST consists of an infinite list of the data that starts off as follows:
𝐴0 ∶ Type

𝐴1 ∶ (𝑥01 ∶ 𝐴0) (𝑥10 ∶ 𝐴0) → Type

𝐴2 ∶ (𝑥001 ∶ 𝐴0) (𝑥010 ∶ 𝐴0) (𝛽011 ∶ 𝐴1 𝑥001 𝑥010) (𝑥100 ∶ 𝐴0) (𝛽101 ∶ 𝐴1 𝑥001 𝑥100)
(𝛽110 ∶ 𝐴1 𝑥010 𝑥100) → Type

𝐴3 ∶ (𝑥0001 ∶ 𝐴0) (𝑥0010 ∶ 𝐴0) (𝛽0011 ∶ 𝐴1 𝑥0001 𝑥0010) (𝑥0100 ∶ 𝐴0) (𝛽0101 ∶ 𝐴1 𝑥0001 𝑥0100)
(𝛽0110 ∶ 𝐴1 𝑥0010 𝑥0100) (𝔣0111 ∶ 𝐴2 𝑥0001 𝑥0010 𝛽0011 𝑥0100 𝛽0101 𝛽0110) (𝑥1000 ∶ 𝐴0)
(𝛽1001 ∶ 𝐴1 𝑥0001 𝑥1000) (𝛽1010 ∶ 𝐴1 𝑥0010 𝑥1000) (𝔣1011 ∶ 𝐴2 𝑥0001 𝑥0010 𝛽0011 𝑥1000 𝛽1001 𝛽1010)
(𝛽1100 ∶ 𝐴1 𝑥0100 𝑥1000) (𝔣1101 ∶ 𝐴2 𝑥0001 𝑥0100 𝛽0101 𝑥1000 𝛽1001 𝛽1100)
(𝔣1110 ∶ 𝐴2 𝑥0010 𝑥0100 𝛽0110 𝑥1000 𝛽1010 𝛽1100) → Type

…

Semi-Simplicial Types [cont.]
A SST consists of an infinite list of the data that starts off as follows:
𝐴0 ∶ Type

𝐴1 ∶ (𝑥01 ∶ 𝐴0) (𝑥10 ∶ 𝐴0) → Type

𝐴2 ∶ (𝑥001 ∶ 𝐴0) (𝑥010 ∶ 𝐴0) (𝛽011 ∶ 𝐴1 𝑥001 𝑥010) (𝑥100 ∶ 𝐴0) (𝛽101 ∶ 𝐴1 𝑥001 𝑥100)
(𝛽110 ∶ 𝐴1 𝑥010 𝑥100) → Type

𝐴3 ∶ (𝑥0001 ∶ 𝐴0) (𝑥0010 ∶ 𝐴0) (𝛽0011 ∶ 𝐴1 𝑥0001 𝑥0010) (𝑥0100 ∶ 𝐴0) (𝛽0101 ∶ 𝐴1 𝑥0001 𝑥0100)
(𝛽0110 ∶ 𝐴1 𝑥0010 𝑥0100) (𝔣0111 ∶ 𝐴2 𝑥0001 𝑥0010 𝛽0011 𝑥0100 𝛽0101 𝛽0110) (𝑥1000 ∶ 𝐴0)
(𝛽1001 ∶ 𝐴1 𝑥0001 𝑥1000) (𝛽1010 ∶ 𝐴1 𝑥0010 𝑥1000) (𝔣1011 ∶ 𝐴2 𝑥0001 𝑥0010 𝛽0011 𝑥1000 𝛽1001 𝛽1010)
(𝛽1100 ∶ 𝐴1 𝑥0100 𝑥1000) (𝔣1101 ∶ 𝐴2 𝑥0001 𝑥0100 𝛽0101 𝑥1000 𝛽1001 𝛽1100)
(𝔣1110 ∶ 𝐴2 𝑥0010 𝑥0100 𝛽0110 𝑥1000 𝛽1010 𝛽1100) → Type

…

Semi-Simplicial Types [cont.]
A SST consists of an infinite list of the data that starts off as follows:
𝐴0 ∶ Type

𝐴1 ∶ (𝑥01 ∶ 𝐴0) (𝑥10 ∶ 𝐴0) → Type

𝐴2 ∶ (𝑥001 ∶ 𝐴0) (𝑥010 ∶ 𝐴0) (𝛽011 ∶ 𝐴1 𝑥001 𝑥010) (𝑥100 ∶ 𝐴0) (𝛽101 ∶ 𝐴1 𝑥001 𝑥100)
(𝛽110 ∶ 𝐴1 𝑥010 𝑥100) → Type

𝐴3 ∶ (𝑥0001 ∶ 𝐴0) (𝑥0010 ∶ 𝐴0) (𝛽0011 ∶ 𝐴1 𝑥0001 𝑥0010) (𝑥0100 ∶ 𝐴0) (𝛽0101 ∶ 𝐴1 𝑥0001 𝑥0100)
(𝛽0110 ∶ 𝐴1 𝑥0010 𝑥0100) (𝔣0111 ∶ 𝐴2 𝑥0001 𝑥0010 𝛽0011 𝑥0100 𝛽0101 𝛽0110) (𝑥1000 ∶ 𝐴0)
(𝛽1001 ∶ 𝐴1 𝑥0001 𝑥1000) (𝛽1010 ∶ 𝐴1 𝑥0010 𝑥1000) (𝔣1011 ∶ 𝐴2 𝑥0001 𝑥0010 𝛽0011 𝑥1000 𝛽1001 𝛽1010)
(𝛽1100 ∶ 𝐴1 𝑥0100 𝑥1000) (𝔣1101 ∶ 𝐴2 𝑥0001 𝑥0100 𝛽0101 𝑥1000 𝛽1001 𝛽1100)
(𝔣1110 ∶ 𝐴2 𝑥0010 𝑥0100 𝛽0110 𝑥1000 𝛽1010 𝛽1100) → Type

…

Semi-Simplicial Types [cont.]
A SST consists of an infinite list of the data that starts off as follows:
𝐴0 ∶ Type

𝐴1 ∶ (𝑥01 ∶ 𝐴0) (𝑥10 ∶ 𝐴0) → Type

𝐴2 ∶ (𝑥001 ∶ 𝐴0) (𝑥010 ∶ 𝐴0) (𝛽011 ∶ 𝐴1 𝑥001 𝑥010) (𝑥100 ∶ 𝐴0) (𝛽101 ∶ 𝐴1 𝑥001 𝑥100)
(𝛽110 ∶ 𝐴1 𝑥010 𝑥100) → Type

𝐴3 ∶ (𝑥0001 ∶ 𝐴0) (𝑥0010 ∶ 𝐴0) (𝛽0011 ∶ 𝐴1 𝑥0001 𝑥0010) (𝑥0100 ∶ 𝐴0) (𝛽0101 ∶ 𝐴1 𝑥0001 𝑥0100)
(𝛽0110 ∶ 𝐴1 𝑥0010 𝑥0100) (𝔣0111 ∶ 𝐴2 𝑥0001 𝑥0010 𝛽0011 𝑥0100 𝛽0101 𝛽0110) (𝑥1000 ∶ 𝐴0)
(𝛽1001 ∶ 𝐴1 𝑥0001 𝑥1000) (𝛽1010 ∶ 𝐴1 𝑥0010 𝑥1000) (𝔣1011 ∶ 𝐴2 𝑥0001 𝑥0010 𝛽0011 𝑥1000 𝛽1001 𝛽1010)
(𝛽1100 ∶ 𝐴1 𝑥0100 𝑥1000) (𝔣1101 ∶ 𝐴2 𝑥0001 𝑥0100 𝛽0101 𝑥1000 𝛽1001 𝛽1100)
(𝔣1110 ∶ 𝐴2 𝑥0010 𝑥0100 𝛽0110 𝑥1000 𝛽1010 𝛽1100) → Type

…

The Problem

One of the biggest open problems in type theory was to define semi-simplicial
types internal to a semantically general homotopy type theory

This is related to the problem of defining the hierarchy of points, lines, triangles,
etc. valued in spaces internal to homotopy theory

The problem of defining semi-simplicial sets is easy, i.e. with h-sets instead of
types [although the solutions available in Book HoTT are far from elegant]

Simplex Categories

Consider the category Δ whose objects are natural numbers
The number 𝑛 represents a stack of (𝑛 + 1) elements
Morphisms are order preserving injections:

2 4

Simplex Categories

Consider the category Δ whose objects are natural numbers
The number 𝑛 represents a stack of (𝑛 + 1) elements
Morphisms are order preserving injections:

2 4

Simplex Categories

Consider the category Δ whose objects are natural numbers
The number 𝑛 represents a stack of (𝑛 + 1) elements
Morphisms are order preserving injections:

2 4

Simplex Categories [cont.]

Let 𝐴 be a presheaf on Δ and consider 𝔣111 ∶ 𝐴2

𝔣111

𝛽011 𝛽101

𝛽110

𝑥001

𝑥010 𝑥100

ӡ000

= {𝑎, 𝑏, 𝑐}

= {𝑏, 𝑐}
= {𝑎, 𝑐}

{𝑎, 𝑏} =

= {𝑐}= {𝑏}
{𝑎} =

= { }

Simplex Categories [cont.]

Let 𝐴 be a presheaf on Δ and consider 𝔣111 ∶ 𝐴2

𝔣111

𝛽011 𝛽101

𝛽110

𝑥001

𝑥010 𝑥100

ӡ000

= {𝑎, 𝑏, 𝑐}

= {𝑏, 𝑐}
= {𝑎, 𝑐}

{𝑎, 𝑏} =

= {𝑐}= {𝑏}
{𝑎} =

= { }

Simplex Categories [cont.]

Let 𝐴 be a presheaf on Δ and consider 𝔣111 ∶ 𝐴2

𝔣111

𝛽011 𝛽101

𝛽110

𝑥001

𝑥010 𝑥100

ӡ000

= {𝑎, 𝑏, 𝑐}

= {𝑏, 𝑐}
= {𝑎, 𝑐}

{𝑎, 𝑏} =

= {𝑐}= {𝑏}
{𝑎} =

= { }

Simplex Categories [cont.]

We define Δ+ to be the category of whole numbers starting from −1
The number −1 represents the stack with no elements
Δ+ is obtained from Δ by adding an initial object

Δ is known as the semi-simplex category
Δ+ is known as the augmented semi-simplex category

Simplex Categories [cont.]

We define Δ+ to be the category of whole numbers starting from −1
The number −1 represents the stack with no elements
Δ+ is obtained from Δ by adding an initial object

Δ is known as the semi-simplex category
Δ+ is known as the augmented semi-simplex category

Semi-Simplicial Sets

A semi-simplicial set can be defined as a family of sets 𝐴𝑛 for 𝑛 ≥ 0
Along with maps 𝜕𝑘 ∶ 𝐴𝑛 → 𝐴𝑛−1, for 𝑘 ∈ {0, … , 𝑛}

𝐴0 𝐴1 𝐴2 𝐴3 …

These have to satisfy that:

𝜕𝑘 ∘ 𝜕𝑙 = 𝜕𝑙−1 ∘ 𝜕𝑘 for 𝑘 < 𝑙

This is the fibred formulation

Semi-Simplicial Spaces

If we replace sets with spaces, then the condition on face maps is a homotopy:

𝛼𝑘, 𝑙 ∶ 𝜕𝑘 ∘ 𝜕𝑙 ≃ 𝜕𝑙−1 ∘ 𝜕𝑘 for 𝑘 < 𝑙

However, this is generally not satisfactory, as for 𝑘 < 𝑙 < 𝑚, we can prove that
𝜕𝑘 ∘ 𝜕𝑙 ∘ 𝜕𝑚 ≃ 𝜕𝑚−2 ∘ 𝜕𝑙−1 ∘ 𝜕𝑘 in two different ways
We require coherences 𝛽𝑘, 𝑙, 𝑚 that:

𝛽𝑘, 𝑙, 𝑚 ∶ 𝛼𝑘, 𝑙 ⋆ 𝜕𝑚 𝜕𝑙−1 ⋆ 𝛼𝑘, 𝑚 𝛼𝑙−1, 𝑚−1 ⋆ 𝜕𝑘 ≃ 𝜕𝑘 ⋆ 𝛼𝑙, 𝑚 𝛼𝑘, 𝑚−1 ⋆ 𝜕𝑙 𝜕𝑚−2 ⋆ 𝛼𝑘, 𝑙

Semi-Simplicial Spaces

If we replace sets with spaces, then the condition on face maps is a homotopy:

𝛼𝑘, 𝑙 ∶ 𝜕𝑘 ∘ 𝜕𝑙 ≃ 𝜕𝑙−1 ∘ 𝜕𝑘 for 𝑘 < 𝑙

However, this is generally not satisfactory, as for 𝑘 < 𝑙 < 𝑚, we can prove that
𝜕𝑘 ∘ 𝜕𝑙 ∘ 𝜕𝑚 ≃ 𝜕𝑚−2 ∘ 𝜕𝑙−1 ∘ 𝜕𝑘 in two different ways

We require coherences 𝛽𝑘, 𝑙, 𝑚 that:

𝛽𝑘, 𝑙, 𝑚 ∶ 𝛼𝑘, 𝑙 ⋆ 𝜕𝑚 𝜕𝑙−1 ⋆ 𝛼𝑘, 𝑚 𝛼𝑙−1, 𝑚−1 ⋆ 𝜕𝑘 ≃ 𝜕𝑘 ⋆ 𝛼𝑙, 𝑚 𝛼𝑘, 𝑚−1 ⋆ 𝜕𝑙 𝜕𝑚−2 ⋆ 𝛼𝑘, 𝑙

Semi-Simplicial Spaces

If we replace sets with spaces, then the condition on face maps is a homotopy:

𝛼𝑘, 𝑙 ∶ 𝜕𝑘 ∘ 𝜕𝑙 ≃ 𝜕𝑙−1 ∘ 𝜕𝑘 for 𝑘 < 𝑙

However, this is generally not satisfactory, as for 𝑘 < 𝑙 < 𝑚, we can prove that
𝜕𝑘 ∘ 𝜕𝑙 ∘ 𝜕𝑚 ≃ 𝜕𝑚−2 ∘ 𝜕𝑙−1 ∘ 𝜕𝑘 in two different ways
We require coherences 𝛽𝑘, 𝑙, 𝑚 that:

𝛽𝑘, 𝑙, 𝑚 ∶ 𝛼𝑘, 𝑙 ⋆ 𝜕𝑚 𝜕𝑙−1 ⋆ 𝛼𝑘, 𝑚 𝛼𝑙−1, 𝑚−1 ⋆ 𝜕𝑘 ≃ 𝜕𝑘 ⋆ 𝛼𝑙, 𝑚 𝛼𝑘, 𝑚−1 ⋆ 𝜕𝑙 𝜕𝑚−2 ⋆ 𝛼𝑘, 𝑙

Semi-Simplicial Spaces [cont.]

This last condition can be visualised as follows:

𝜕𝑘 ∘ 𝜕𝑙 ∘ 𝜕𝑚 𝜕𝑚−2 ∘ 𝜕𝑙−1 ∘ 𝜕𝑘

𝜕𝑙−1 ∘ 𝜕𝑘 ∘ 𝜕𝑚 𝜕𝑙−1 ∘ 𝜕𝑚−1 ∘ 𝜕𝑘

𝜕𝑘 ∘ 𝜕𝑚−1 ∘ 𝜕𝑙 𝜕𝑚−2 ∘ 𝜕𝑘 ∘ 𝜕𝑙

⇓

Semi-Simplicial Spaces [cont.]

Next, considering a sequence of four consecutive face maps, we obtain a higher
dimensional condition in the form of a permutahedron:

Writing down a formula for the required higher homotopy is very difficult!

Crux

When trying to construct SST in an indexed manner, one needs to prove a
theorem about the construction
To prove that theorem, one needs to prove a meta-theorem about the proof of
the theorem
To prove that meta-theorem, one needs to prove a meta-meta-theorem about the
proof of the meta-theorem
…
And these theorems start to look a lot like the permutahedral coherences!

Overview

Mike Shulman and I constructed a new type theory called Displayed Type Theory
that solves the problem of constructing SST
This solution is very satisfying because the idea behind it says something
fundamentally new about semi-simplicial types, mathematically and
independently of type theory

Overview [cont.]

To explain this solution, we first have to explain what it means to be a model of
dependent type theory
Then, if we have any starting model, we build a new model, called the simplicial
model in which everything is a triangle

The key of this construction is that it is made in terms of display, which gives us
new language only applicable in a diagram model
Using this new language, we can state a universal property for SST as a diagram,
which enables a construction
Taking the discrete part of this diagram gives us an object SST in our arbitrary
starting model
We thus have language for working with SST in full semantic generality

Overview [cont.]

To explain this solution, we first have to explain what it means to be a model of
dependent type theory
Then, if we have any starting model, we build a new model, called the simplicial
model in which everything is a triangle
The key of this construction is that it is made in terms of display, which gives us
new language only applicable in a diagram model
Using this new language, we can state a universal property for SST as a diagram,
which enables a construction

Taking the discrete part of this diagram gives us an object SST in our arbitrary
starting model
We thus have language for working with SST in full semantic generality

Overview [cont.]

To explain this solution, we first have to explain what it means to be a model of
dependent type theory
Then, if we have any starting model, we build a new model, called the simplicial
model in which everything is a triangle
The key of this construction is that it is made in terms of display, which gives us
new language only applicable in a diagram model
Using this new language, we can state a universal property for SST as a diagram,
which enables a construction
Taking the discrete part of this diagram gives us an object SST in our arbitrary
starting model
We thus have language for working with SST in full semantic generality

2
The Semantics of Dependent Type Theory

Settings for Space

There are various notions of settings for homotopy theory
These include model categories and ∞-toposes

One key notion present in any such setting is that of a fibration

The type theory notion of an indexed type semantically corresponds to a fibration

Settings for Space

There are various notions of settings for homotopy theory
These include model categories and ∞-toposes

One key notion present in any such setting is that of a fibration

The type theory notion of an indexed type semantically corresponds to a fibration

Settings for Space

There are various notions of settings for homotopy theory
These include model categories and ∞-toposes

One key notion present in any such setting is that of a fibration

The type theory notion of an indexed type semantically corresponds to a fibration

Categories with Families

In this talk, we will formally delve into one notion of fibrations
This is known as a Category with Families (CwF)

Definition: A CwF consists of a category 𝒞, along with a chosen terminal
object 𝟙, and equipped with the data of two families of presheaves

Ty ∶ 𝒞 op → Set

Tm ∶ (∫
𝒞

Ty) op → Set

and, for every Γ ∶ ob𝒞 and 𝐴 ∶ Ty Γ, a chosen representation of the presheaf

Δ ↦ (𝜎 ∶ mor𝒞 (Δ , Γ)) × Tm Δ 𝐴𝜎 ◁

Categories with Families

In this talk, we will formally delve into one notion of fibrations
This is known as a Category with Families (CwF)

Definition: A CwF consists of a category 𝒞, along with a chosen terminal
object 𝟙, and equipped with the data of two families of presheaves

Ty ∶ 𝒞 op → Set

Tm ∶ (∫
𝒞

Ty) op → Set

and, for every Γ ∶ ob𝒞 and 𝐴 ∶ Ty Γ, a chosen representation of the presheaf

Δ ↦ (𝜎 ∶ mor𝒞 (Δ , Γ)) × Tm Δ 𝐴𝜎 ◁

Categories with Families

In this talk, we will formally delve into one notion of fibrations
This is known as a Category with Families (CwF)

Definition: A CwF consists of a category 𝒞, along with a chosen terminal
object 𝟙, and equipped with the data of two families of presheaves

Ty ∶ 𝒞 op → Set

Tm ∶ (∫
𝒞

Ty) op → Set

and, for every Γ ∶ ob𝒞 and 𝐴 ∶ Ty Γ, a chosen representation of the presheaf

Δ ↦ (𝜎 ∶ mor𝒞 (Δ , Γ)) × Tm Δ 𝐴𝜎 ◁

Notation
The objects of the category 𝒞 are called contexts and are denoted by Δ, Γ
For Γ ∶ ob𝒞, we write

Γ ctx
The empty context is the chosen terminal object 𝟙, and is denoted by

() ctx

The morphisms of 𝒞 are called substitutions and are denoted by 𝜎, 𝜏
For 𝜎 ∶ mor𝒞 (Δ , Γ), we write

𝜎 ∶ Δ → Γ

The unique substitution into the empty context is denoted by

[] ∶ Γ → ()

Notation
The objects of the category 𝒞 are called contexts and are denoted by Δ, Γ
For Γ ∶ ob𝒞, we write

Γ ctx
The empty context is the chosen terminal object 𝟙, and is denoted by

() ctx

The morphisms of 𝒞 are called substitutions and are denoted by 𝜎, 𝜏
For 𝜎 ∶ mor𝒞 (Δ , Γ), we write

𝜎 ∶ Δ → Γ

The unique substitution into the empty context is denoted by

[] ∶ Γ → ()

Notation [cont.]

The elements of the presheaf Ty are called types and are denoted by 𝐴, 𝐵
For 𝐴 ∶ Ty Γ, we write

𝛾 ∶ Γ ⊢ 𝐴 𝛾 type

The elements of the presheaf Tm are called terms and are denoted by 𝑡, 𝑠
For 𝑡 ∶ Ty Γ 𝐴, we write

𝛾 ∶ Γ ⊢ 𝑡 𝛾 ∶ 𝐴 𝛾

We denote the functorial action of substitutions by

𝜎 ∶ Δ → Γ 𝛾 ∶ Γ ⊢ 𝐴 𝛾 type
𝛿 ∶ Δ ⊢ 𝐴 (𝜎 𝛿) type

𝜎 ∶ Δ → Γ 𝛾 ∶ Γ ⊢ 𝑡 𝛾 ∶ 𝐴 𝛾
𝛿 ∶ Δ ⊢ 𝑡 (𝜎 𝛿) ∶ 𝐴 (𝜎 𝛿)

Notation [cont.]

The elements of the presheaf Ty are called types and are denoted by 𝐴, 𝐵
For 𝐴 ∶ Ty Γ, we write

𝛾 ∶ Γ ⊢ 𝐴 𝛾 type

The elements of the presheaf Tm are called terms and are denoted by 𝑡, 𝑠
For 𝑡 ∶ Ty Γ 𝐴, we write

𝛾 ∶ Γ ⊢ 𝑡 𝛾 ∶ 𝐴 𝛾

We denote the functorial action of substitutions by

𝜎 ∶ Δ → Γ 𝛾 ∶ Γ ⊢ 𝐴 𝛾 type
𝛿 ∶ Δ ⊢ 𝐴 (𝜎 𝛿) type

𝜎 ∶ Δ → Γ 𝛾 ∶ Γ ⊢ 𝑡 𝛾 ∶ 𝐴 𝛾
𝛿 ∶ Δ ⊢ 𝑡 (𝜎 𝛿) ∶ 𝐴 (𝜎 𝛿)

Notation [cont.]

The elements of the presheaf Ty are called types and are denoted by 𝐴, 𝐵
For 𝐴 ∶ Ty Γ, we write

𝛾 ∶ Γ ⊢ 𝐴 𝛾 type

The elements of the presheaf Tm are called terms and are denoted by 𝑡, 𝑠
For 𝑡 ∶ Ty Γ 𝐴, we write

𝛾 ∶ Γ ⊢ 𝑡 𝛾 ∶ 𝐴 𝛾

We denote the functorial action of substitutions by

𝜎 ∶ Δ → Γ 𝛾 ∶ Γ ⊢ 𝐴 𝛾 type
𝛿 ∶ Δ ⊢ 𝐴 (𝜎 𝛿) type

𝜎 ∶ Δ → Γ 𝛾 ∶ Γ ⊢ 𝑡 𝛾 ∶ 𝐴 𝛾
𝛿 ∶ Δ ⊢ 𝑡 (𝜎 𝛿) ∶ 𝐴 (𝜎 𝛿)

Notation [cont.]

We now consider the hypothesis of the chosen representation of

Δ ↦ (𝜎 ∶ mor𝒞 (Δ , Γ)) × Tm Δ 𝐴𝜎

First, for Γ ctx and 𝛾 ∶ Γ ⊢ 𝐴 𝛾 type, we get the representing object

(𝛾 ∶ Γ, 𝑎 ∶ 𝐴 𝛾) ctx

This is known as the context extension

Notation [cont.]

We now consider the hypothesis of the chosen representation of

Δ ↦ (𝜎 ∶ mor𝒞 (Δ , Γ)) × Tm Δ 𝐴𝜎

First, for Γ ctx and 𝛾 ∶ Γ ⊢ 𝐴 𝛾 type, we get the representing object

(𝛾 ∶ Γ, 𝑎 ∶ 𝐴 𝛾) ctx

This is known as the context extension

Notation [cont.]

We then have a natural family of bijections:

(Δ → (𝛾 ∶ Γ, 𝑎 ∶ 𝐴 𝛾)) ≃ ((𝜎 ∶ Δ → Γ) × (𝛿 ∶ Δ ⊢ 𝑡 𝛿 ∶ 𝐴 (𝜎 𝛿)))

By Yoneda, this is determined by evaluating at 1(𝛾 ∶ Γ, 𝑎 ∶ 𝐴 𝛾)

The first component gives the parent map:

pt𝐴 ∶ (𝛾 ∶ Γ, 𝑎 ∶ 𝐴 𝛾) → Γ

The second component gives the zero variable:

𝛾 ∶ Γ, 𝑎 ∶ 𝐴 𝛾 ⊢ zv𝐴 [𝛾, 𝑎] ∶ 𝐴 (pt𝐴 [𝛾, 𝑎])

Notation [cont.]

We then have a natural family of bijections:

(Δ → (𝛾 ∶ Γ, 𝑎 ∶ 𝐴 𝛾)) ≃ ((𝜎 ∶ Δ → Γ) × (𝛿 ∶ Δ ⊢ 𝑡 𝛿 ∶ 𝐴 (𝜎 𝛿)))

By Yoneda, this is determined by evaluating at 1(𝛾 ∶ Γ, 𝑎 ∶ 𝐴 𝛾)

The first component gives the parent map:

pt𝐴 ∶ (𝛾 ∶ Γ, 𝑎 ∶ 𝐴 𝛾) → Γ

The second component gives the zero variable:

𝛾 ∶ Γ, 𝑎 ∶ 𝐴 𝛾 ⊢ zv𝐴 [𝛾, 𝑎] ∶ 𝐴 (pt𝐴 [𝛾, 𝑎])

Notation [cont.]

We then have a natural family of bijections:

(Δ → (𝛾 ∶ Γ, 𝑎 ∶ 𝐴 𝛾)) ≃ ((𝜎 ∶ Δ → Γ) × (𝛿 ∶ Δ ⊢ 𝑡 𝛿 ∶ 𝐴 (𝜎 𝛿)))

By Yoneda, this is determined by evaluating at 1(𝛾 ∶ Γ, 𝑎 ∶ 𝐴 𝛾)

The first component gives the parent map:

pt𝐴 ∶ (𝛾 ∶ Γ, 𝑎 ∶ 𝐴 𝛾) → Γ

The second component gives the zero variable:

𝛾 ∶ Γ, 𝑎 ∶ 𝐴 𝛾 ⊢ zv𝐴 [𝛾, 𝑎] ∶ 𝐴 (pt𝐴 [𝛾, 𝑎])

Notation [cont.]

We then have a natural family of bijections:

(Δ → (𝛾 ∶ Γ, 𝑎 ∶ 𝐴 𝛾)) ≃ ((𝜎 ∶ Δ → Γ) × (𝛿 ∶ Δ ⊢ 𝑡 𝛿 ∶ 𝐴 (𝜎 𝛿)))

By Yoneda, this is determined by evaluating at 1(𝛾 ∶ Γ, 𝑎 ∶ 𝐴 𝛾)

The first component gives the parent map:

pt𝐴 ∶ (𝛾 ∶ Γ, 𝑎 ∶ 𝐴 𝛾) → Γ

The second component gives the zero variable:

𝛾 ∶ Γ, 𝑎 ∶ 𝐴 𝛾 ⊢ zv𝐴 [𝛾, 𝑎] ∶ 𝐴 (pt𝐴 [𝛾, 𝑎])

Notation [cont.]

Given the natural family of bijections:

(Δ → (𝛾 ∶ Γ, 𝑎 ∶ 𝐴 𝛾)) ≃ ((𝜎 ∶ Δ → Γ) × (𝛿 ∶ Δ ⊢ 𝑡 𝛿 ∶ 𝐴 (𝜎 𝛿)))

By Yoneda, the forwards direction of the map is:

(𝜏 ∶ Δ → (𝛾 ∶ Γ, 𝑎 ∶ 𝐴 𝛾)) ↦ (pt𝐴 ∘ 𝜏, (zv𝐴)𝜏)

We have a map in the reverse direction representing substitution extension:

𝜎 ∶ Δ → Γ 𝛿 ∶ Δ ⊢ 𝑡 𝛿 ∶ 𝐴 (𝜎 𝛿)
[𝜎, 𝑡] ∶ Δ → (𝛾 ∶ Γ, 𝑎 ∶ 𝐴 𝛾)

Notation [cont.]

Given the natural family of bijections:

(Δ → (𝛾 ∶ Γ, 𝑎 ∶ 𝐴 𝛾)) ≃ ((𝜎 ∶ Δ → Γ) × (𝛿 ∶ Δ ⊢ 𝑡 𝛿 ∶ 𝐴 (𝜎 𝛿)))

By Yoneda, the forwards direction of the map is:

(𝜏 ∶ Δ → (𝛾 ∶ Γ, 𝑎 ∶ 𝐴 𝛾)) ↦ (pt𝐴 ∘ 𝜏, (zv𝐴)𝜏)

We have a map in the reverse direction representing substitution extension:

𝜎 ∶ Δ → Γ 𝛿 ∶ Δ ⊢ 𝑡 𝛿 ∶ 𝐴 (𝜎 𝛿)
[𝜎, 𝑡] ∶ Δ → (𝛾 ∶ Γ, 𝑎 ∶ 𝐴 𝛾)

Notation [cont.]

The fact that the two maps outlined above are inverse bijections says that:

I. For 𝜎 ∶ Δ → Γ and 𝛿 ∶ Δ ⊢ 𝑡 𝛿 ∶ 𝐴 (𝜎 𝛿),

pt𝐴 ∘ [𝜎, 𝑡] ≡ 𝜎

(zv𝐴)[𝜎, 𝑡] ≡ 𝑡

II. For 𝜏 ∶ Δ → (𝛾 ∶ Γ, 𝑎 ∶ 𝐴 𝛾),

[pt𝐴 ∘ 𝜏, (zv𝐴)𝜏] ≡ 𝜏

Notation [cont.]

Note that the construction above say that the following diagram is a pullback:

(𝛿 ∶ Δ, 𝑎 ∶ 𝐴 (𝜎 𝛿)) (𝛾 ∶ Γ, 𝑎 ∶ 𝐴 𝛾)

Δ Γ

[𝜎 ∘ pt𝐴𝜎, zv𝐴𝜎]

pt𝐴𝜎
⌟

pt𝐴

𝜎

Thus we have a strictly functorial assignment of distinguished pullbacks of parent
maps along arbitrary substitutions

Notation [cont.]

Note that the construction above say that the following diagram is a pullback:

(𝛿 ∶ Δ, 𝑎 ∶ 𝐴 (𝜎 𝛿)) (𝛾 ∶ Γ, 𝑎 ∶ 𝐴 𝛾)

Δ Γ

[𝜎 ∘ pt𝐴𝜎, zv𝐴𝜎]

pt𝐴𝜎
⌟

pt𝐴

𝜎

Thus we have a strictly functorial assignment of distinguished pullbacks of parent
maps along arbitrary substitutions

3
The Simplicial Model

Diagram Models

Let 𝒞 be a category with families
We want to construct 𝒞Δop

+ , which is known as a diagram model

The underlying category of 𝒞Δop
+ is just 𝒞-valued presheaves in Δop

+

The fibrant structure of 𝒞Δop
+ is known as the Reedy model structure

However, we will give a new custom construction of this CwF structure that uses
special properties of Δop

+

Diagram Models

Let 𝒞 be a category with families
We want to construct 𝒞Δop

+ , which is known as a diagram model

The underlying category of 𝒞Δop
+ is just 𝒞-valued presheaves in Δop

+

The fibrant structure of 𝒞Δop
+ is known as the Reedy model structure

However, we will give a new custom construction of this CwF structure that uses
special properties of Δop

+

Diagram Models

Let 𝒞 be a category with families
We want to construct 𝒞Δop

+ , which is known as a diagram model

The underlying category of 𝒞Δop
+ is just 𝒞-valued presheaves in Δop

+

The fibrant structure of 𝒞Δop
+ is known as the Reedy model structure

However, we will give a new custom construction of this CwF structure that uses
special properties of Δop

+

Diagram Models [cont.]

We will refer to the starting model 𝒞 as the discrete model, denoted dm
We refer to the diagram model 𝒞Δop

+ as the simplicial model, denoted sm

For 𝑛 ≥ −2, let Δ𝑛
+ denote the full subcategory of Δ+ on objects 𝑘 ≤ 𝑛

In order to construct 𝒞Δop
+ , we will first construct 𝒞Δ𝑛 op

+

We will refer to 𝒞Δ𝑛 op
+ as the truncated simplicial model, denoted sm𝑛

Diagram Models [cont.]

We will refer to the starting model 𝒞 as the discrete model, denoted dm
We refer to the diagram model 𝒞Δop

+ as the simplicial model, denoted sm

For 𝑛 ≥ −2, let Δ𝑛
+ denote the full subcategory of Δ+ on objects 𝑘 ≤ 𝑛

In order to construct 𝒞Δop
+ , we will first construct 𝒞Δ𝑛 op

+

We will refer to 𝒞Δ𝑛 op
+ as the truncated simplicial model, denoted sm𝑛

Categorical Structure

Recall that in Δ+, the objects are whole numbers ⟨𝑘⟩ for 𝑘 ≥ −1
Let 𝔹 be the type of binary digits, which are 𝟘, 𝟙 ∶ 𝔹
For 𝑛 ≥ 𝑚 ≥ −1, let 𝔹⟨𝑛⟩, ⟨𝑚⟩ be the type of length 𝑛 + 1 binary sequences such
that exactly 𝑚 + 1 of the digits have value 𝟙

The identities 1⟨𝑛⟩ are given by length 𝑛 + 1 sequences of the digit 𝟙

For 𝑏 ∶ 𝔹⟨𝑛⟩, ⟨𝑘⟩, we obtain 𝟘𝑏 ∶ 𝔹⟨𝑛+1⟩, ⟨𝑘⟩ and 𝟙𝑏 ∶ 𝔹⟨𝑛+1⟩, ⟨𝑘+1⟩ by left appending

𝟘𝑏1 ∘ 𝑏0 ≡ 𝟘 (𝑏1 ∘ 𝑏0)
𝟙𝑏1 ∘ 𝟙𝑏0 ≡ 𝟙 (𝑏1 ∘ 𝑏0)
𝟙𝑏1 ∘ 𝟘𝑏0 ≡ 𝟘 (𝑏1 ∘ 𝑏0)

Categorical Structure

Recall that in Δ+, the objects are whole numbers ⟨𝑘⟩ for 𝑘 ≥ −1
Let 𝔹 be the type of binary digits, which are 𝟘, 𝟙 ∶ 𝔹
For 𝑛 ≥ 𝑚 ≥ −1, let 𝔹⟨𝑛⟩, ⟨𝑚⟩ be the type of length 𝑛 + 1 binary sequences such
that exactly 𝑚 + 1 of the digits have value 𝟙

The identities 1⟨𝑛⟩ are given by length 𝑛 + 1 sequences of the digit 𝟙

For 𝑏 ∶ 𝔹⟨𝑛⟩, ⟨𝑘⟩, we obtain 𝟘𝑏 ∶ 𝔹⟨𝑛+1⟩, ⟨𝑘⟩ and 𝟙𝑏 ∶ 𝔹⟨𝑛+1⟩, ⟨𝑘+1⟩ by left appending

𝟘𝑏1 ∘ 𝑏0 ≡ 𝟘 (𝑏1 ∘ 𝑏0)
𝟙𝑏1 ∘ 𝟙𝑏0 ≡ 𝟙 (𝑏1 ∘ 𝑏0)
𝟙𝑏1 ∘ 𝟘𝑏0 ≡ 𝟘 (𝑏1 ∘ 𝑏0)

Categorical Structure [cont.]

If Γ ctxsm𝑛 , then Γ is a 𝒞-valued presheaf on Δ𝑛
+

Thus we have, for 𝑚 ≥ −2, that Γ𝑚 ctxdm, such that Γ−2 ≡ ()dm

Also, for any 𝑏 ∶ 𝔹⟨𝑛⟩, ⟨𝑚⟩, we have Γ𝑏 ∶ Γ𝑛 → Γ𝑚

We write 𝛾𝑏 for Γ𝑏 𝛾

Categorical Structure [cont.]

If Γ ctxsm𝑛 , then Γ is a 𝒞-valued presheaf on Δ𝑛
+

Thus we have, for 𝑚 ≥ −2, that Γ𝑚 ctxdm, such that Γ−2 ≡ ()dm

Also, for any 𝑏 ∶ 𝔹⟨𝑛⟩, ⟨𝑚⟩, we have Γ𝑏 ∶ Γ𝑛 → Γ𝑚

We write 𝛾𝑏 for Γ𝑏 𝛾

Categorical Structure [cont.]

There are two functors of relevance – truncation and décalage

𝜋 ∶ 𝒞Δ𝑛+1 op
+ → 𝒞Δ𝑛 op

+ (–) D ∶ 𝒞Δ𝑛+1 op
+ → 𝒞Δ𝑛 op

+

(𝜋Γ)𝑚+1 ≡ Γ𝑚+1 (ΓD)
𝑚+1

≡ Γ𝑚+2

(𝜋Γ)𝑏 ≡ Γ𝑏 (ΓD)𝑏 ≡ Γ𝟙𝑏

(𝜋𝜎)𝑚+1 ≡ 𝜎𝑚+1 (𝜎D)
𝑚+1

≡ 𝜎𝑚+2

There is a natural transformation between them:

𝜌 ∶ (–) D ⇒ 𝜋
(𝜌Γ)𝑚+1 ≡ Γ𝟘1⟨𝑚+1⟩

Categorical Structure [cont.]

There are two functors of relevance – truncation and décalage

𝜋 ∶ 𝒞Δ𝑛+1 op
+ → 𝒞Δ𝑛 op

+ (–) D ∶ 𝒞Δ𝑛+1 op
+ → 𝒞Δ𝑛 op

+

(𝜋Γ)𝑚+1 ≡ Γ𝑚+1 (ΓD)
𝑚+1

≡ Γ𝑚+2

(𝜋Γ)𝑏 ≡ Γ𝑏 (ΓD)𝑏 ≡ Γ𝟙𝑏

(𝜋𝜎)𝑚+1 ≡ 𝜎𝑚+1 (𝜎D)
𝑚+1

≡ 𝜎𝑚+2

There is a natural transformation between them:

𝜌 ∶ (–) D ⇒ 𝜋
(𝜌Γ)𝑚+1 ≡ Γ𝟘1⟨𝑚+1⟩

Intuition
At the most basic level, we would like to define the judgement

𝛾 ∶ Γ ⊢sm𝑛+1 𝐴 𝛾 type

A simplicial type consists of its discrete 𝑚-simplex types for 𝑚 ≤ 𝑛 + 1

𝛾−1 ∶ Γ−1 ⊢dm 𝐴−1 𝛾−1 type
𝛾0 ∶ Γ0, ӡ0 ∶ 𝐴−1 𝛾0

𝟘 ⊢dm 𝐴0 𝛾0 ӡ0 type
𝛾1 ∶ Γ1, ӡ00 ∶ 𝐴−1 𝛾1

𝟘𝟘, 𝑥01 ∶ 𝐴0 𝛾1
𝟘𝟙 ӡ00, 𝑥10 ∶ 𝐴0 𝛾1

𝟙𝟘 ӡ00 ⊢dm 𝐴1 𝛾1 ӡ00 𝑥01 𝑥10 type
⋮

We will write the type declarations of 𝐴𝑛+1 generically as:

𝛾𝑛+1 ∶ Γ𝑛+1, 𝜕𝑎 ∶ 𝜋𝐴𝜕(𝑛+1) 𝛾𝑛+1 ⊢dm 𝐴𝑛+1 𝛾𝑛+1 𝜕𝑎 type

Intuition
At the most basic level, we would like to define the judgement

𝛾 ∶ Γ ⊢sm𝑛+1 𝐴 𝛾 type

A simplicial type consists of its discrete 𝑚-simplex types for 𝑚 ≤ 𝑛 + 1

𝛾−1 ∶ Γ−1 ⊢dm 𝐴−1 𝛾−1 type
𝛾0 ∶ Γ0, ӡ0 ∶ 𝐴−1 𝛾0

𝟘 ⊢dm 𝐴0 𝛾0 ӡ0 type
𝛾1 ∶ Γ1, ӡ00 ∶ 𝐴−1 𝛾1

𝟘𝟘, 𝑥01 ∶ 𝐴0 𝛾1
𝟘𝟙 ӡ00, 𝑥10 ∶ 𝐴0 𝛾1

𝟙𝟘 ӡ00 ⊢dm 𝐴1 𝛾1 ӡ00 𝑥01 𝑥10 type
⋮

We will write the type declarations of 𝐴𝑛+1 generically as:

𝛾𝑛+1 ∶ Γ𝑛+1, 𝜕𝑎 ∶ 𝜋𝐴𝜕(𝑛+1) 𝛾𝑛+1 ⊢dm 𝐴𝑛+1 𝛾𝑛+1 𝜕𝑎 type

Intuition
At the most basic level, we would like to define the judgement

𝛾 ∶ Γ ⊢sm𝑛+1 𝐴 𝛾 type

A simplicial type consists of its discrete 𝑚-simplex types for 𝑚 ≤ 𝑛 + 1

𝛾−1 ∶ Γ−1 ⊢dm 𝐴−1 𝛾−1 type
𝛾0 ∶ Γ0, ӡ0 ∶ 𝐴−1 𝛾0

𝟘 ⊢dm 𝐴0 𝛾0 ӡ0 type
𝛾1 ∶ Γ1, ӡ00 ∶ 𝐴−1 𝛾1

𝟘𝟘, 𝑥01 ∶ 𝐴0 𝛾1
𝟘𝟙 ӡ00, 𝑥10 ∶ 𝐴0 𝛾1

𝟙𝟘 ӡ00 ⊢dm 𝐴1 𝛾1 ӡ00 𝑥01 𝑥10 type
⋮

We will write the type declarations of 𝐴𝑛+1 generically as:

𝛾𝑛+1 ∶ Γ𝑛+1, 𝜕𝑎 ∶ 𝜋𝐴𝜕(𝑛+1) 𝛾𝑛+1 ⊢dm 𝐴𝑛+1 𝛾𝑛+1 𝜕𝑎 type

Intuition [cont.]
Similarly, for terms, we would like to define the judgement

𝛾 ∶ Γ ⊢sm𝑛+1 𝑡 𝛾 ∶ 𝐴 𝛾

A simplicial term consists of its discrete 𝑚-simplex components for 𝑚 ≤ 𝑛 + 1

𝛾−1 ∶ Γ−1 ⊢dm 𝑡−1 𝛾−1 ∶ 𝐴−1 𝛾−1

𝛾0 ∶ Γ0 ⊢dm 𝑡0 𝛾0 ∶ 𝐴0 𝛾0 (𝑡−1 𝛾0
𝟘)

𝛾1 ∶ Γ1 ⊢dm 𝑡1 𝛾1 ∶ 𝐴1 𝛾1 (𝑡−1 𝛾0
𝟘𝟘) (𝑡0 𝛾1

𝟘𝟙) (𝑡0 𝛾1
𝟙𝟘)

⋮

We will write the type declarations of 𝑡𝑛+1 generically as:

𝛾𝑛+1 ∶ Γ𝑛+1 ⊢dm 𝑡𝑛+1 𝛾𝑛+1 ∶ 𝐴𝑛+1 𝛾𝑛+1 (𝜋𝑡𝜕(𝑛+1) 𝛾𝑛+1)

Intuition [cont.]
Similarly, for terms, we would like to define the judgement

𝛾 ∶ Γ ⊢sm𝑛+1 𝑡 𝛾 ∶ 𝐴 𝛾

A simplicial term consists of its discrete 𝑚-simplex components for 𝑚 ≤ 𝑛 + 1

𝛾−1 ∶ Γ−1 ⊢dm 𝑡−1 𝛾−1 ∶ 𝐴−1 𝛾−1

𝛾0 ∶ Γ0 ⊢dm 𝑡0 𝛾0 ∶ 𝐴0 𝛾0 (𝑡−1 𝛾0
𝟘)

𝛾1 ∶ Γ1 ⊢dm 𝑡1 𝛾1 ∶ 𝐴1 𝛾1 (𝑡−1 𝛾0
𝟘𝟘) (𝑡0 𝛾1

𝟘𝟙) (𝑡0 𝛾1
𝟙𝟘)

⋮

We will write the type declarations of 𝑡𝑛+1 generically as:

𝛾𝑛+1 ∶ Γ𝑛+1 ⊢dm 𝑡𝑛+1 𝛾𝑛+1 ∶ 𝐴𝑛+1 𝛾𝑛+1 (𝜋𝑡𝜕(𝑛+1) 𝛾𝑛+1)

Intuition [cont.]
Similarly, for terms, we would like to define the judgement

𝛾 ∶ Γ ⊢sm𝑛+1 𝑡 𝛾 ∶ 𝐴 𝛾

A simplicial term consists of its discrete 𝑚-simplex components for 𝑚 ≤ 𝑛 + 1

𝛾−1 ∶ Γ−1 ⊢dm 𝑡−1 𝛾−1 ∶ 𝐴−1 𝛾−1

𝛾0 ∶ Γ0 ⊢dm 𝑡0 𝛾0 ∶ 𝐴0 𝛾0 (𝑡−1 𝛾0
𝟘)

𝛾1 ∶ Γ1 ⊢dm 𝑡1 𝛾1 ∶ 𝐴1 𝛾1 (𝑡−1 𝛾0
𝟘𝟘) (𝑡0 𝛾1

𝟘𝟙) (𝑡0 𝛾1
𝟙𝟘)

⋮

We will write the type declarations of 𝑡𝑛+1 generically as:

𝛾𝑛+1 ∶ Γ𝑛+1 ⊢dm 𝑡𝑛+1 𝛾𝑛+1 ∶ 𝐴𝑛+1 𝛾𝑛+1 (𝜋𝑡𝜕(𝑛+1) 𝛾𝑛+1)

Matching Objects

We now construct of the fibrant structure of the truncated simplicial model

As we saw, a key part of this is the matching contexts and matching substitutions

𝛾– ∶ 𝜋Γ ⊢sm𝑛 𝐴 𝛾– type
𝛾𝑛+1 ∶ Γ𝑛+1 ⊢dm 𝐴𝜕(𝑛+1) 𝛾𝑛+1 tel

𝛾– ∶ 𝜋Γ ⊢sm𝑛 𝑡 𝛾– ∶ 𝐴 𝛾–

𝛾𝑛+1 ∶ Γ𝑛+1 ⊢dm 𝑡𝜕(𝑛+1) 𝛾𝑛+1 ∶ 𝐴𝜕(𝑛+1) 𝛾𝑛+1

Types and Terms

Types and terms in the truncated simplicial model are then defined as follows:

𝛾– ∶ 𝜋Γ ⊢sm𝑛 𝜋𝐴 𝛾– type
𝛾𝑛+1 ∶ Γ𝑛+1, 𝜕𝑎 ∶ 𝜋𝐴𝜕(𝑛+1) 𝛾𝑛+1 ⊢dm 𝐴𝑛+1 𝛾𝑛+1 𝜕𝑎 type

𝛾 ∶ Γ ⊢sm𝑛+1 𝐴 𝛾 type
===

𝛾– ∶ 𝜋Γ ⊢sm𝑛 𝜋𝑡 𝛾– ∶ 𝜋𝐴 𝛾–

𝛾𝑛+1 ∶ Γ𝑛+1 ⊢dm 𝑡𝑛+1 𝛾𝑛+1 ∶ 𝐴𝑛+1 𝛾𝑛+1 (𝜋𝑡𝜕(𝑛+1) 𝛾𝑛+1)

𝛾 ∶ Γ ⊢sm𝑛+1 𝑡 𝛾 ∶ 𝐴 𝛾
===

Extension

Extension of contexts by a type 𝛾 ∶ Γ ⊢sm𝑛+1 𝐴 𝛾 type is obtained as follows

(𝛾 ∶ Γ, 𝑎 ∶ 𝐴 𝛾)
𝑚+1

≡ (𝛾– ∶ 𝜋Γ, 𝑎– ∶ 𝜋𝐴 𝛾–)
𝑚+1

for 𝑚 < 𝑛

(𝛾 ∶ Γ, 𝑎 ∶ 𝐴 𝛾)
𝑛+1

≡ (𝛾𝑛+1 ∶ Γ𝑛+1, 𝜕𝑎 ∶ 𝜋𝐴𝜕(𝑛+1) 𝛾𝑛+1, 𝑎 ∶ 𝐴𝑛+1 𝛾𝑛+1 𝜕𝑎)

Extension of a substitution by a term 𝛾 ∶ Γ ⊢sm𝑛+1 𝑡 𝛾 ∶ 𝐴 𝛾 is obtained as follows

[𝜎, 𝑡]𝑚+1 ≡ [𝜋𝜎, 𝜋𝑡]𝑚+1 for 𝑚 < 𝑛

[𝜎, 𝑡]𝑛+1 ≡ [𝜎𝑛+1, 𝜋𝑡𝜕(𝑛+1), 𝑡𝑛+1]

Extension

Extension of contexts by a type 𝛾 ∶ Γ ⊢sm𝑛+1 𝐴 𝛾 type is obtained as follows

(𝛾 ∶ Γ, 𝑎 ∶ 𝐴 𝛾)
𝑚+1

≡ (𝛾– ∶ 𝜋Γ, 𝑎– ∶ 𝜋𝐴 𝛾–)
𝑚+1

for 𝑚 < 𝑛

(𝛾 ∶ Γ, 𝑎 ∶ 𝐴 𝛾)
𝑛+1

≡ (𝛾𝑛+1 ∶ Γ𝑛+1, 𝜕𝑎 ∶ 𝜋𝐴𝜕(𝑛+1) 𝛾𝑛+1, 𝑎 ∶ 𝐴𝑛+1 𝛾𝑛+1 𝜕𝑎)

Extension of a substitution by a term 𝛾 ∶ Γ ⊢sm𝑛+1 𝑡 𝛾 ∶ 𝐴 𝛾 is obtained as follows

[𝜎, 𝑡]𝑚+1 ≡ [𝜋𝜎, 𝜋𝑡]𝑚+1 for 𝑚 < 𝑛

[𝜎, 𝑡]𝑛+1 ≡ [𝜎𝑛+1, 𝜋𝑡𝜕(𝑛+1), 𝑡𝑛+1]

Display

Décalage comes with a fibrant counterpart known as display

𝛾 ∶ Γ ⊢sm𝑛+1 𝐴 𝛾 type
𝛾+ ∶ ΓD, 𝑎 ∶ 𝜋𝐴𝜌Γ 𝛾+ ⊢sm𝑛 𝐴d 𝛾+ 𝑎 type

𝛾 ∶ Γ ⊢sm𝑛+1 𝑡 𝛾 ∶ 𝐴 𝛾
𝛾+ ∶ ΓD ⊢sm𝑛 𝑡d 𝛾+ ∶ 𝐴d 𝛾+ 𝜋𝑡𝜌Γ

Our construction will prove the following formulas for déclage:

(𝛾 ∶ Γ, 𝑎 ∶ 𝐴 𝛾) D ≡ (𝛾+ ∶ ΓD, 𝑎 ∶ 𝜋𝐴𝜌Γ 𝛾+, 𝑎′ ∶ 𝐴d 𝛾+ 𝑎)
[𝜎, 𝑡] D ≡ [𝜎D, 𝜋𝑡𝜌Δ , 𝑡d]

Display

Décalage comes with a fibrant counterpart known as display

𝛾 ∶ Γ ⊢sm𝑛+1 𝐴 𝛾 type
𝛾+ ∶ ΓD, 𝑎 ∶ 𝜋𝐴𝜌Γ 𝛾+ ⊢sm𝑛 𝐴d 𝛾+ 𝑎 type

𝛾 ∶ Γ ⊢sm𝑛+1 𝑡 𝛾 ∶ 𝐴 𝛾
𝛾+ ∶ ΓD ⊢sm𝑛 𝑡d 𝛾+ ∶ 𝐴d 𝛾+ 𝜋𝑡𝜌Γ

Our construction will prove the following formulas for déclage:

(𝛾 ∶ Γ, 𝑎 ∶ 𝐴 𝛾) D ≡ (𝛾+ ∶ ΓD, 𝑎 ∶ 𝜋𝐴𝜌Γ 𝛾+, 𝑎′ ∶ 𝐴d 𝛾+ 𝑎)
[𝜎, 𝑡] D ≡ [𝜎D, 𝜋𝑡𝜌Δ , 𝑡d]

Inductive Definitions

Matching contexts and substitutions are inductively defined as follows:

𝐴𝜕(−1) ≡ ()dm

𝐴𝜕(𝑛+2) 𝛾𝑛+2 ≡ (𝜕𝑎 ∶ (𝜋𝐴𝜌𝜋Γ)𝜕(𝑛+1) 𝛾𝑛+2, 𝑎 ∶ (𝐴𝜌Γ)𝑛+1 𝛾𝑛+2 𝜕𝑎,

𝜕𝑎′ ∶ (𝐴d)
𝜕(𝑛+1)

[𝛾𝑛+2, 𝜕𝑎, 𝑎])

𝑡𝜕(−1) ≡ []dm

𝑡𝜕(𝑛+2) 𝛾𝑛+2 ≡ [(𝜋𝑡𝜌𝜋Γ)𝜕(𝑛+1) , (𝑡𝜌Γ)𝑛+1 , (𝑡d)
𝜕(𝑛+1)

]

Inductive Definitions [cont.]

For display, we define:

𝜋(𝐴d) ≡ 𝜋𝐴d (𝐴d)
𝑛+1

≡ 𝐴𝑛+2

𝜋(𝑡d) ≡ 𝜋𝑡d (𝑡d)
𝑛+1

≡ 𝑡𝑛+2

Thus, just like décalage, display is a shift map

There is a lot more structure left to define a full CwF structure
What is presented here is sufficient to highlight the roles of décalage and display

Inductive Definitions [cont.]

For display, we define:

𝜋(𝐴d) ≡ 𝜋𝐴d (𝐴d)
𝑛+1

≡ 𝐴𝑛+2

𝜋(𝑡d) ≡ 𝜋𝑡d (𝑡d)
𝑛+1

≡ 𝑡𝑛+2

Thus, just like décalage, display is a shift map

There is a lot more structure left to define a full CwF structure
What is presented here is sufficient to highlight the roles of décalage and display

Display in Type Theory

We can type theoretically present display as follows:

Γ ⊢sm 𝐴 ∶ Type Γ ⊢sm 𝑡 ∶ 𝐴
ΓD ⊢sm 𝐴d ∶ 𝐴𝜌Γ → Type ΓD ⊢sm 𝑡d ∶ 𝐴d 𝑡𝜌Γ

Typed 𝐴 ≡ 𝐴 → Type (𝜆 𝑥. 𝑡) d ≡ 𝜆 𝑥 𝑥′. 𝑡d

(𝐴 → 𝐵) d 𝑓 ≡ (𝑥 ∶ 𝐴) → 𝐴d 𝑥 → 𝐵d (𝑓 𝑥) (𝑓 𝑎) d ≡ 𝑓d 𝑎 𝑎d

(𝛾 ∶ Γ, 𝑎 ∶ 𝐴) D ≡ (𝛾+ ∶ ΓD, 𝑎 ∶ 𝐴𝜌Γ , 𝑎′ ∶ 𝐴d 𝑎) ()D
sm ≡ ()sm

𝑥d ≡ 𝑥′

Parametricity

Consider the type of the polymorphic identity function:

Tid ≡ (𝐴 ∶ Type) → 𝐴 → 𝐴

We calculate:

Tid
d 𝑓 ≡ (𝐴 ∶ Type) (𝑃 ∶ 𝐴 → Type) (𝑥 ∶ 𝐴) → 𝑃 𝑥 → 𝑃 (𝑓 𝐴 𝑥)

Then if () ⊢sm id ∶ Tid, we have that idd is a proof of this free theorem

We then have:
idThm : (id : △◻ Tid) (𝐴 : Type) (𝑎 : 𝐴) → Path 𝐴 (id 𝐴 𝑎) 𝑎
idThm id 𝐴 𝑎 = idd 𝐴 (𝜆 𝑏 → Path 𝐴 𝑏 𝑎) 𝑎 refl

Parametricity

Consider the type of the polymorphic identity function:

Tid ≡ (𝐴 ∶ Type) → 𝐴 → 𝐴

We calculate:

Tid
d 𝑓 ≡ (𝐴 ∶ Type) (𝑃 ∶ 𝐴 → Type) (𝑥 ∶ 𝐴) → 𝑃 𝑥 → 𝑃 (𝑓 𝐴 𝑥)

Then if () ⊢sm id ∶ Tid, we have that idd is a proof of this free theorem

We then have:
idThm : (id : △◻ Tid) (𝐴 : Type) (𝑎 : 𝐴) → Path 𝐴 (id 𝐴 𝑎) 𝑎
idThm id 𝐴 𝑎 = idd 𝐴 (𝜆 𝑏 → Path 𝐴 𝑏 𝑎) 𝑎 refl

Iterating Display

Now, what happens if we repeatedly apply d?

𝐴 ∶ Type
𝐴d ∶ 𝐴 → Type
𝐴dd ∶ (ӡ00 ∶ 𝐴) → 𝐴d ӡ00 → 𝐴d ӡ00 → Type
𝐴ddd ∶ (ӡ000 ∶ 𝐴) (𝑥001 ∶ 𝐴d ӡ000) (𝑥010 ∶ 𝐴d ӡ000) →

𝐴dd ӡ000 𝑥001 𝑥010 → (𝑥100 ∶ 𝐴d ӡ000) →
𝐴dd ӡ000 𝑥001 𝑥100 → 𝐴dd ӡ000 𝑥010 𝑥100 → Type

Everything is a triangle!

𝑓111

𝛽011 𝛽101

𝛽110

𝑥001

𝑥010 𝑥100

ӡ000

4
Semi-Simplicial Types

Object Classifiers
In a CwF, an object classifier consists of:

i a universe type
𝛾 ∶ Γ ⊢ Type 𝛾 type

ii an element fibration
𝛾 ∶ Γ, 𝐴 ∶ Type 𝛾 ⊢ El 𝐴 𝛾 type

iii for every type 𝛾 ∶ Γ ⊢ 𝐴 𝛾 type a code in the universe
𝛾 ∶ Γ ⊢ Code 𝐴 𝛾 ∶ Type 𝛾

⊳ such that the pullback of the El fibration along that code exactly yields the
type 𝐴, that is

𝛾 ∶ Γ ⊢ El (Code 𝐴) 𝛾 ≡ 𝐴 𝛾

Object Classifiers
In a CwF, an object classifier consists of:

i a universe type
𝛾 ∶ Γ ⊢ Type 𝛾 type

ii an element fibration
𝛾 ∶ Γ, 𝐴 ∶ Type 𝛾 ⊢ El 𝐴 𝛾 type

iii for every type 𝛾 ∶ Γ ⊢ 𝐴 𝛾 type a code in the universe
𝛾 ∶ Γ ⊢ Code 𝐴 𝛾 ∶ Type 𝛾

⊳ such that the pullback of the El fibration along that code exactly yields the
type 𝐴, that is

𝛾 ∶ Γ ⊢ El (Code 𝐴) 𝛾 ≡ 𝐴 𝛾

Object Classifiers
In a CwF, an object classifier consists of:

i a universe type
𝛾 ∶ Γ ⊢ Type 𝛾 type

ii an element fibration
𝛾 ∶ Γ, 𝐴 ∶ Type 𝛾 ⊢ El 𝐴 𝛾 type

iii for every type 𝛾 ∶ Γ ⊢ 𝐴 𝛾 type a code in the universe
𝛾 ∶ Γ ⊢ Code 𝐴 𝛾 ∶ Type 𝛾

⊳ such that the pullback of the El fibration along that code exactly yields the
type 𝐴, that is

𝛾 ∶ Γ ⊢ El (Code 𝐴) 𝛾 ≡ 𝐴 𝛾

Object Classifiers
In a CwF, an object classifier consists of:

i a universe type
𝛾 ∶ Γ ⊢ Type 𝛾 type

ii an element fibration
𝛾 ∶ Γ, 𝐴 ∶ Type 𝛾 ⊢ El 𝐴 𝛾 type

iii for every type 𝛾 ∶ Γ ⊢ 𝐴 𝛾 type a code in the universe
𝛾 ∶ Γ ⊢ Code 𝐴 𝛾 ∶ Type 𝛾

⊳ such that the pullback of the El fibration along that code exactly yields the
type 𝐴, that is

𝛾 ∶ Γ ⊢ El (Code 𝐴) 𝛾 ≡ 𝐴 𝛾

SSTs Homotopically
Now consider the problem of constructing a classifier for semi-simplicial diagrams
Such a classifier would consist of a type 𝛾 ∶ Γ ⊢ SST 𝛾 type, along with a
simplicial diagram tower of the form

𝛾 ∶ Γ, 𝐴 ∶ SST 𝛾
⊢ El0 𝐴 type

𝛾 ∶ Γ, 𝐴 ∶ SST 𝛾, 𝑎01 ∶ El0 𝛾 𝐴, 𝑎10 ∶ El0 𝛾 𝐴
⊢ El1 𝛾 𝐴 𝑎01 𝑎10 type

𝛾 ∶ Γ, 𝐴 ∶ SST 𝛾, 𝑎001 ∶ El0 𝛾 𝐴, 𝑎010 ∶ El0 𝛾 𝐴, 𝑎011 ∶ El1 𝛾 𝐴 𝑎001 𝑎010

𝑎100 ∶ El0 𝛾 𝐴, 𝑎101 ∶ El1 𝛾 𝐴 𝑎100 𝑎100, 𝑎110 ∶ El1 𝛾 𝐴 𝑎100 𝑎010

⊢ El2 𝛾 𝐴 𝑎001 𝑎010 𝑎011 𝑎100 𝑎101 𝑎110 type
⋯

SSTs Homotopically
Now consider the problem of constructing a classifier for semi-simplicial diagrams
Such a classifier would consist of a type 𝛾 ∶ Γ ⊢ SST 𝛾 type, along with a
simplicial diagram tower of the form

𝛾 ∶ Γ, 𝐴 ∶ SST 𝛾
⊢ El0 𝐴 type

𝛾 ∶ Γ, 𝐴 ∶ SST 𝛾, 𝑎01 ∶ El0 𝛾 𝐴, 𝑎10 ∶ El0 𝛾 𝐴
⊢ El1 𝛾 𝐴 𝑎01 𝑎10 type

𝛾 ∶ Γ, 𝐴 ∶ SST 𝛾, 𝑎001 ∶ El0 𝛾 𝐴, 𝑎010 ∶ El0 𝛾 𝐴, 𝑎011 ∶ El1 𝛾 𝐴 𝑎001 𝑎010

𝑎100 ∶ El0 𝛾 𝐴, 𝑎101 ∶ El1 𝛾 𝐴 𝑎100 𝑎100, 𝑎110 ∶ El1 𝛾 𝐴 𝑎100 𝑎010

⊢ El2 𝛾 𝐴 𝑎001 𝑎010 𝑎011 𝑎100 𝑎101 𝑎110 type
⋯

SSTs Homotopically [cont.]

This type SST and element fibrations El𝑛 are such that for any simplicial
diagram data over a context Γ, this data arises uniquely as the appropriate series
of pullbacks constructed from some term 𝛾 ∶ Γ ⊢ 𝐴 𝛾 ∶ SST 𝛾
This hypothesis would result in some SST analogue of Code

Stated in this way, this is an infinitary or non-elementary universal property
It refers to infinite diagrams indexed by the external set of natural numbers (as
opposed to any internal natural-numbers object that may exist in 𝒞)
The problem of defining semi-simplicial types can roughly be thought of as one of
giving a finitary universal property for such an object, so that it could be
characterized and even constructed in a finitary syntactic type theory

SSTs Homotopically [cont.]

This type SST and element fibrations El𝑛 are such that for any simplicial
diagram data over a context Γ, this data arises uniquely as the appropriate series
of pullbacks constructed from some term 𝛾 ∶ Γ ⊢ 𝐴 𝛾 ∶ SST 𝛾
This hypothesis would result in some SST analogue of Code
Stated in this way, this is an infinitary or non-elementary universal property
It refers to infinite diagrams indexed by the external set of natural numbers (as
opposed to any internal natural-numbers object that may exist in 𝒞)

The problem of defining semi-simplicial types can roughly be thought of as one of
giving a finitary universal property for such an object, so that it could be
characterized and even constructed in a finitary syntactic type theory

SSTs Homotopically [cont.]

This type SST and element fibrations El𝑛 are such that for any simplicial
diagram data over a context Γ, this data arises uniquely as the appropriate series
of pullbacks constructed from some term 𝛾 ∶ Γ ⊢ 𝐴 𝛾 ∶ SST 𝛾
This hypothesis would result in some SST analogue of Code
Stated in this way, this is an infinitary or non-elementary universal property
It refers to infinite diagrams indexed by the external set of natural numbers (as
opposed to any internal natural-numbers object that may exist in 𝒞)
The problem of defining semi-simplicial types can roughly be thought of as one of
giving a finitary universal property for such an object, so that it could be
characterized and even constructed in a finitary syntactic type theory

Semi-Simplicial Types

Main Idea: A semi-simplicial type 𝑋 consists of a type 𝑋0 together with, for
every 𝑥 ∶ 𝑋0, a displayed semi-simplicial type over 𝑋

In Agda-esque syntax, we write this coinductive definition as:
codata SST : Type where

Z : SST → Type
S : (𝑋 : SST) → Z 𝑋 → SSTd 𝑋

Semi-Simplicial Types

Main Idea: A semi-simplicial type 𝑋 consists of a type 𝑋0 together with, for
every 𝑥 ∶ 𝑋0, a displayed semi-simplicial type over 𝑋

In Agda-esque syntax, we write this coinductive definition as:
codata SST : Type where

Z : SST → Type
S : (𝑋 : SST) → Z 𝑋 → SSTd 𝑋

Unfolding the Definition

codata SST : Type where
Z : SST → Type
S : (𝑋 : SST) → Z 𝑋 → SSTd 𝑋

Thus 𝐴 ∶ SST consists of:
i a type of 0-simplicies, Z 𝐴 ∶ Type
ii for every 𝑥 ∶ Z 𝐴, a dependent SST called the slice, S 𝐴 𝑥 ∶ SSTd 𝐴

Now if 𝐵 ∶ SSTd 𝐴, then 𝐵 consists of:
i a family Zd 𝐵 ∶ Z 𝐴 → Type
ii for every 𝑥 ∶ Z 𝐴 and 𝑥′ ∶ Zd 𝐵 𝑥, a doubly dependent SST,

Sd 𝐵 𝑥 𝑥′ ∶ SSTd 𝐴 𝐵 (S 𝐴 𝑥)

Unfolding the Definition

codata SST : Type where
Z : SST → Type
S : (𝑋 : SST) → Z 𝑋 → SSTd 𝑋

Thus 𝐴 ∶ SST consists of:
i a type of 0-simplicies, Z 𝐴 ∶ Type
ii for every 𝑥 ∶ Z 𝐴, a dependent SST called the slice, S 𝐴 𝑥 ∶ SSTd 𝐴

Now if 𝐵 ∶ SSTd 𝐴, then 𝐵 consists of:
i a family Zd 𝐵 ∶ Z 𝐴 → Type
ii for every 𝑥 ∶ Z 𝐴 and 𝑥′ ∶ Zd 𝐵 𝑥, a doubly dependent SST,

Sd 𝐵 𝑥 𝑥′ ∶ SSTd 𝐴 𝐵 (S 𝐴 𝑥)

Unfolding the Definition

codata SST : Type where
Z : SST → Type
S : (𝑋 : SST) → Z 𝑋 → SSTd 𝑋

Thus 𝐴 ∶ SST consists of:
i a type of 0-simplicies, Z 𝐴 ∶ Type
ii for every 𝑥 ∶ Z 𝐴, a dependent SST called the slice, S 𝐴 𝑥 ∶ SSTd 𝐴

Now if 𝐵 ∶ SSTd 𝐴, then 𝐵 consists of:
i a family Zd 𝐵 ∶ Z 𝐴 → Type
ii for every 𝑥 ∶ Z 𝐴 and 𝑥′ ∶ Zd 𝐵 𝑥, a doubly dependent SST,

Sd 𝐵 𝑥 𝑥′ ∶ SSTd 𝐴 𝐵 (S 𝐴 𝑥)

Unfolding the Definition [cont.]
Given 𝐴 ∶ SST, we get a type of zero-simplices by:

𝐴0 ∶ Type
𝐴0 ≡ Z 𝐴

Similarly, 𝐵 ∶ SSTd 𝐴, we get a type of dependent zero-simplices by:
𝐵0 ∶ 𝐴0 → Type
𝐵0 𝑦 ≡ Zd 𝐵 𝑦

Putting this together, if we have two 0-simplices 𝑥00 𝑥10 ∶ 𝐴0 of 𝐴, then we may
form the type of 1-simplices of 𝐴 as follows:

𝐴1 ∶ (𝑥01 ∶ 𝐴0) (𝑥10 ∶ 𝐴0) → Type
𝐴1 𝑥01 𝑥10 ≡ Zd (S 𝐴 𝑥01) 𝑥10,

Unfolding the Definition [cont.]
Given 𝐴 ∶ SST, we get a type of zero-simplices by:

𝐴0 ∶ Type
𝐴0 ≡ Z 𝐴

Similarly, 𝐵 ∶ SSTd 𝐴, we get a type of dependent zero-simplices by:
𝐵0 ∶ 𝐴0 → Type
𝐵0 𝑦 ≡ Zd 𝐵 𝑦

Putting this together, if we have two 0-simplices 𝑥00 𝑥10 ∶ 𝐴0 of 𝐴, then we may
form the type of 1-simplices of 𝐴 as follows:

𝐴1 ∶ (𝑥01 ∶ 𝐴0) (𝑥10 ∶ 𝐴0) → Type
𝐴1 𝑥01 𝑥10 ≡ Zd (S 𝐴 𝑥01) 𝑥10,

Unfolding the Definition [cont.]
Given 𝐴 ∶ SST, we get a type of zero-simplices by:

𝐴0 ∶ Type
𝐴0 ≡ Z 𝐴

Similarly, 𝐵 ∶ SSTd 𝐴, we get a type of dependent zero-simplices by:
𝐵0 ∶ 𝐴0 → Type
𝐵0 𝑦 ≡ Zd 𝐵 𝑦

Putting this together, if we have two 0-simplices 𝑥00 𝑥10 ∶ 𝐴0 of 𝐴, then we may
form the type of 1-simplices of 𝐴 as follows:

𝐴1 ∶ (𝑥01 ∶ 𝐴0) (𝑥10 ∶ 𝐴0) → Type
𝐴1 𝑥01 𝑥10 ≡ Zd (S 𝐴 𝑥01) 𝑥10,

Unfolding the Definition [cont.]

It therefore stands to reason that any 𝐵 ∶ SSTd 𝐴 should have a type of
dependent 1-simplices living over the 1-simplices of 𝐴
Thus if 𝛽11 ∶ 𝐴1 𝑦01 𝑦10, then given dependent endpoints 𝑧01 ∶ 𝐵0 𝑦01 and 𝑧10 ∶ 𝐵0 𝑦10,
we should get a type 𝐵1 𝑦01 𝑧01 𝑦10 𝑧10 𝛽11, this is given by:

𝐵1 ∶ (𝑦01 ∶ 𝐴0) (𝑧01 ∶ 𝐵0 𝑦01) (𝑦10 ∶ 𝐴0) (𝑧10 ∶ 𝐵0 𝑦10) (𝛽11 ∶ 𝐴1 𝑦00 𝑦10) → Type
𝐵1 𝑦01 𝑧01 𝑦10 𝑧10 𝛽11 ≡ Zdd (Sd 𝐵 𝑦01 𝑧01) 𝑦10 𝑧10 𝛽11,

Unfolding the Definition [cont.]

It therefore stands to reason that any 𝐵 ∶ SSTd 𝐴 should have a type of
dependent 1-simplices living over the 1-simplices of 𝐴
Thus if 𝛽11 ∶ 𝐴1 𝑦01 𝑦10, then given dependent endpoints 𝑧01 ∶ 𝐵0 𝑦01 and 𝑧10 ∶ 𝐵0 𝑦10,
we should get a type 𝐵1 𝑦01 𝑧01 𝑦10 𝑧10 𝛽11, this is given by:

𝐵1 ∶ (𝑦01 ∶ 𝐴0) (𝑧01 ∶ 𝐵0 𝑦01) (𝑦10 ∶ 𝐴0) (𝑧10 ∶ 𝐵0 𝑦10) (𝛽11 ∶ 𝐴1 𝑦00 𝑦10) → Type
𝐵1 𝑦01 𝑧01 𝑦10 𝑧10 𝛽11 ≡ Zdd (Sd 𝐵 𝑦01 𝑧01) 𝑦10 𝑧10 𝛽11,

Unfolding the Definition [cont.]

Then, putting all of this together again, if we have a 0-simplex 𝑥001 ∶ 𝐴0, then we
take 𝐵 ≡ S 𝐴 𝑥00

For 𝑥010 ∶ 𝐴0, we have that 𝐵0 𝑥010 ≡ Zd (S 𝐴 𝑥001) 𝑥010 ≡ 𝐴1 𝑥001 𝑥010

We thus get the type of 2-simplices of 𝐴 as follows:

𝐴2 ∶ (𝑥001 ∶ 𝐴0) (𝑥010 ∶ 𝐴0) (𝛽011 ∶ 𝐴1 𝑥001 𝑥010) (𝑥100 ∶ 𝐴0)
(𝛽101 ∶ 𝐴1 𝑥001 𝑥100) (𝛽110 ∶ 𝐴1 𝑥010 𝑥100) → Type

𝐴2 𝑥001 𝑥010 𝛽011 𝑥100 𝛽101 𝛽110 ≡ Zdd (Sd (S 𝐴 𝑥001) 𝑥010 𝛽011) 𝑥100 𝛽101 𝛽110

In general, this pattern continues in higher dimensions and the process described
lets us extract 𝑛-simplex types.

Unfolding the Definition [cont.]

Then, putting all of this together again, if we have a 0-simplex 𝑥001 ∶ 𝐴0, then we
take 𝐵 ≡ S 𝐴 𝑥00

For 𝑥010 ∶ 𝐴0, we have that 𝐵0 𝑥010 ≡ Zd (S 𝐴 𝑥001) 𝑥010 ≡ 𝐴1 𝑥001 𝑥010

We thus get the type of 2-simplices of 𝐴 as follows:

𝐴2 ∶ (𝑥001 ∶ 𝐴0) (𝑥010 ∶ 𝐴0) (𝛽011 ∶ 𝐴1 𝑥001 𝑥010) (𝑥100 ∶ 𝐴0)
(𝛽101 ∶ 𝐴1 𝑥001 𝑥100) (𝛽110 ∶ 𝐴1 𝑥010 𝑥100) → Type

𝐴2 𝑥001 𝑥010 𝛽011 𝑥100 𝛽101 𝛽110 ≡ Zdd (Sd (S 𝐴 𝑥001) 𝑥010 𝛽011) 𝑥100 𝛽101 𝛽110

In general, this pattern continues in higher dimensions and the process described
lets us extract 𝑛-simplex types.

Unfolding the Definition [cont.]

Then, putting all of this together again, if we have a 0-simplex 𝑥001 ∶ 𝐴0, then we
take 𝐵 ≡ S 𝐴 𝑥00

For 𝑥010 ∶ 𝐴0, we have that 𝐵0 𝑥010 ≡ Zd (S 𝐴 𝑥001) 𝑥010 ≡ 𝐴1 𝑥001 𝑥010

We thus get the type of 2-simplices of 𝐴 as follows:

𝐴2 ∶ (𝑥001 ∶ 𝐴0) (𝑥010 ∶ 𝐴0) (𝛽011 ∶ 𝐴1 𝑥001 𝑥010) (𝑥100 ∶ 𝐴0)
(𝛽101 ∶ 𝐴1 𝑥001 𝑥100) (𝛽110 ∶ 𝐴1 𝑥010 𝑥100) → Type

𝐴2 𝑥001 𝑥010 𝛽011 𝑥100 𝛽101 𝛽110 ≡ Zdd (Sd (S 𝐴 𝑥001) 𝑥010 𝛽011) 𝑥100 𝛽101 𝛽110

In general, this pattern continues in higher dimensions and the process described
lets us extract 𝑛-simplex types.

Visualisation One

We can visualise what’s going on in two different ways
The first visualisation shows how the 𝑛-simplices of the slice of 𝐴 over 𝑥 live
dependently over simplices of 𝐴:

𝑧1 ∶ (S 𝐴 𝑥)0 𝑦1

𝑧1𝑥 𝑦1

𝛾11 ∶ (S 𝐴 𝑥)1 𝑦01 𝑧01 𝑦10 𝑧10 𝛽11

𝑧01

𝑧10

𝑥 𝛽11
𝛾11

𝑦01

𝑦10

Visualisation Two

The second visualisation explains our formulas in terms of iterated slicing

Z 𝐴

𝑥1

Zd (S 𝐴 𝑥01) 𝑥10

𝑥01

𝑥10

𝛽11

Zdd (Sd (S 𝐴 𝑥001) 𝑥010 𝛽011) 𝑥100 𝛽101 𝛽110

𝑥001

𝑥010

𝛽011
𝑥100𝔣111

𝛽101

𝛽110

The simplices of the slice are mapping objects

A Categorical Universal Property

We give the categorical universal property of SST in the simplicial mode
In general, there are issues of display modifying the context; here we will only
give the UP in the empty context

Suppose that 𝑌 closed type in the simplicial mode; we define an endofunctor by:

𝐹 (𝑌) ≡ ∑
(𝜐 ∶ 𝑌)

∑
(𝐴 ∶ Type)

(𝐴 → 𝑌 d 𝜐)

This endofunctor comes with a copointing 𝜖𝑌 ∶ 𝐹 (𝑌) → 𝑌 by way of projection
Universal Property: Our characterization of SST is that it is a terminal
coalgebra of the copointed endofunctor (𝐹, 𝜖)

A Categorical Universal Property

We give the categorical universal property of SST in the simplicial mode
In general, there are issues of display modifying the context; here we will only
give the UP in the empty context
Suppose that 𝑌 closed type in the simplicial mode; we define an endofunctor by:

𝐹 (𝑌) ≡ ∑
(𝜐 ∶ 𝑌)

∑
(𝐴 ∶ Type)

(𝐴 → 𝑌 d 𝜐)

This endofunctor comes with a copointing 𝜖𝑌 ∶ 𝐹 (𝑌) → 𝑌 by way of projection

Universal Property: Our characterization of SST is that it is a terminal
coalgebra of the copointed endofunctor (𝐹, 𝜖)

A Categorical Universal Property

We give the categorical universal property of SST in the simplicial mode
In general, there are issues of display modifying the context; here we will only
give the UP in the empty context
Suppose that 𝑌 closed type in the simplicial mode; we define an endofunctor by:

𝐹 (𝑌) ≡ ∑
(𝜐 ∶ 𝑌)

∑
(𝐴 ∶ Type)

(𝐴 → 𝑌 d 𝜐)

This endofunctor comes with a copointing 𝜖𝑌 ∶ 𝐹 (𝑌) → 𝑌 by way of projection
Universal Property: Our characterization of SST is that it is a terminal
coalgebra of the copointed endofunctor (𝐹, 𝜖)

A Categorical Universal Property [cont.]

𝐹 (𝑌) ≡ ∑
(𝜐 ∶ 𝑌)

∑
(𝐴 ∶ Type)

(𝐴 → 𝑌 d 𝜐)

Universal Property: Our characterization of SST is that it is a terminal
coalgebra of the copointed endofunctor (𝐹, 𝜖)
Thus, SST is the universal object equipped with a map

SST → ∑
(𝑋 ∶ SST)

∑
(𝐴 ∶ Type)

(𝐴 → SSTd 𝑋)

such that the first component of this map is the identity
What remains, therefore, is two components:

Z ∶ SST → Type
S ∶ (𝑋 ∶ SST) → Z 𝑋 → SSTd 𝑋

A Categorical Universal Property [cont.]

𝐹 (𝑌) ≡ ∑
(𝜐 ∶ 𝑌)

∑
(𝐴 ∶ Type)

(𝐴 → 𝑌 d 𝜐)

Universal Property: Our characterization of SST is that it is a terminal
coalgebra of the copointed endofunctor (𝐹, 𝜖)
Thus, SST is the universal object equipped with a map

SST → ∑
(𝑋 ∶ SST)

∑
(𝐴 ∶ Type)

(𝐴 → SSTd 𝑋)

such that the first component of this map is the identity

What remains, therefore, is two components:
Z ∶ SST → Type
S ∶ (𝑋 ∶ SST) → Z 𝑋 → SSTd 𝑋

A Categorical Universal Property [cont.]

𝐹 (𝑌) ≡ ∑
(𝜐 ∶ 𝑌)

∑
(𝐴 ∶ Type)

(𝐴 → 𝑌 d 𝜐)

Universal Property: Our characterization of SST is that it is a terminal
coalgebra of the copointed endofunctor (𝐹, 𝜖)
Thus, SST is the universal object equipped with a map

SST → ∑
(𝑋 ∶ SST)

∑
(𝐴 ∶ Type)

(𝐴 → SSTd 𝑋)

such that the first component of this map is the identity
What remains, therefore, is two components:

Z ∶ SST → Type
S ∶ (𝑋 ∶ SST) → Z 𝑋 → SSTd 𝑋

A Categorical Universal Property [cont.]

What remains, therefore, is two components:

Z ∶ SST → Type
S ∶ (𝑋 ∶ SST) → Z 𝑋 → SSTd 𝑋

This corresponds to our Agda-esque code:
codata SST : Type where

Z : SST → Type
S : (𝑋 : SST) → Z 𝑋 → SSTd 𝑋

A Categorical Universal Property [cont.]

What remains, therefore, is two components:

Z ∶ SST → Type
S ∶ (𝑋 ∶ SST) → Z 𝑋 → SSTd 𝑋

This corresponds to our Agda-esque code:
codata SST : Type where

Z : SST → Type
S : (𝑋 : SST) → Z 𝑋 → SSTd 𝑋

Examples of SSTs

We can define several examples of SSTs

First, we have the singular semi-simplicial types
Sing : Type → SST
Z (Sing 𝐴) = 𝐴
S (Sing 𝐴) 𝑥 = Singd 𝐴 (𝜆 𝑦 → Path 𝐴 𝑥 𝑦)

Next, we can define products of SSTs
⊗ : SST → SST → SST
Z (𝑋 ⊗ 𝑌) = Z 𝑋 × Z 𝑌
S (𝑋 ⊗ 𝑌) ⟨ 𝑥 , 𝑦 ⟩ = (S 𝑋 𝑥) ⊗d (S 𝑌 𝑦)

Examples of SSTs

We can define several examples of SSTs
First, we have the singular semi-simplicial types
Sing : Type → SST
Z (Sing 𝐴) = 𝐴
S (Sing 𝐴) 𝑥 = Singd 𝐴 (𝜆 𝑦 → Path 𝐴 𝑥 𝑦)

Next, we can define products of SSTs
⊗ : SST → SST → SST
Z (𝑋 ⊗ 𝑌) = Z 𝑋 × Z 𝑌
S (𝑋 ⊗ 𝑌) ⟨ 𝑥 , 𝑦 ⟩ = (S 𝑋 𝑥) ⊗d (S 𝑌 𝑦)

Examples of SSTs

We can define several examples of SSTs
First, we have the singular semi-simplicial types
Sing : Type → SST
Z (Sing 𝐴) = 𝐴
S (Sing 𝐴) 𝑥 = Singd 𝐴 (𝜆 𝑦 → Path 𝐴 𝑥 𝑦)

Next, we can define products of SSTs
⊗ : SST → SST → SST
Z (𝑋 ⊗ 𝑌) = Z 𝑋 × Z 𝑌
S (𝑋 ⊗ 𝑌) ⟨ 𝑥 , 𝑦 ⟩ = (S 𝑋 𝑥) ⊗d (S 𝑌 𝑦)

Displayed Coinductive Types

In dTT, SST is a special case of a displayed coinductive types
Here are some more examples of what we can do:

codata Pt (𝑋 : SST) : Type where
zp : Pt 𝑋 → Z 𝑋
sp : (𝑝 : Pt 𝑋) → Ptd 𝑋 (S 𝑋 (zp 𝑝)) 𝑝

codata Hom (𝑋 𝑌 : SST) : Type where
zhom : Hom 𝑋 𝑌 → Z 𝑋 → Z 𝑌
shom : (𝑓 : Hom 𝑋 𝑌) (𝑥 : Z 𝑋) →

Homd 𝑋 (S 𝑋 𝑥) 𝑌 (S 𝑌 (zhom 𝑓 𝑥)) 𝑓

Displayed Coinductive Types

In dTT, SST is a special case of a displayed coinductive types
Here are some more examples of what we can do:
codata Pt (𝑋 : SST) : Type where

zp : Pt 𝑋 → Z 𝑋
sp : (𝑝 : Pt 𝑋) → Ptd 𝑋 (S 𝑋 (zp 𝑝)) 𝑝

codata Hom (𝑋 𝑌 : SST) : Type where
zhom : Hom 𝑋 𝑌 → Z 𝑋 → Z 𝑌
shom : (𝑓 : Hom 𝑋 𝑌) (𝑥 : Z 𝑋) →

Homd 𝑋 (S 𝑋 𝑥) 𝑌 (S 𝑌 (zhom 𝑓 𝑥)) 𝑓

Displayed Coinductive Types

In dTT, SST is a special case of a displayed coinductive types
Here are some more examples of what we can do:
codata Pt (𝑋 : SST) : Type where

zp : Pt 𝑋 → Z 𝑋
sp : (𝑝 : Pt 𝑋) → Ptd 𝑋 (S 𝑋 (zp 𝑝)) 𝑝

codata Hom (𝑋 𝑌 : SST) : Type where
zhom : Hom 𝑋 𝑌 → Z 𝑋 → Z 𝑌
shom : (𝑓 : Hom 𝑋 𝑌) (𝑥 : Z 𝑋) →

Homd 𝑋 (S 𝑋 𝑥) 𝑌 (S 𝑌 (zhom 𝑓 𝑥)) 𝑓

Correctness of the Definition

We assume that our starting CwF for the discrete mode has 𝜔-limits
This will be true for any ∞-topos model

Then we can show that SST is indeed a classifier for semi-simplicial diagrams

On the other hand, we conjecture that there are models of dTT, perhaps
obtained from realizability, that admit a construction of SST, in our sense, that
do not admit a classifier for semi-simplicial diagrams
If this were the case, then our characterisation would be a more general notion of
internal or uniform diagrams, as opposed to the external version presented at the
start of this section

Correctness of the Definition

We assume that our starting CwF for the discrete mode has 𝜔-limits
This will be true for any ∞-topos model
Then we can show that SST is indeed a classifier for semi-simplicial diagrams

On the other hand, we conjecture that there are models of dTT, perhaps
obtained from realizability, that admit a construction of SST, in our sense, that
do not admit a classifier for semi-simplicial diagrams
If this were the case, then our characterisation would be a more general notion of
internal or uniform diagrams, as opposed to the external version presented at the
start of this section

Correctness of the Definition

We assume that our starting CwF for the discrete mode has 𝜔-limits
This will be true for any ∞-topos model
Then we can show that SST is indeed a classifier for semi-simplicial diagrams

On the other hand, we conjecture that there are models of dTT, perhaps
obtained from realizability, that admit a construction of SST, in our sense, that
do not admit a classifier for semi-simplicial diagrams

If this were the case, then our characterisation would be a more general notion of
internal or uniform diagrams, as opposed to the external version presented at the
start of this section

Correctness of the Definition

We assume that our starting CwF for the discrete mode has 𝜔-limits
This will be true for any ∞-topos model
Then we can show that SST is indeed a classifier for semi-simplicial diagrams

On the other hand, we conjecture that there are models of dTT, perhaps
obtained from realizability, that admit a construction of SST, in our sense, that
do not admit a classifier for semi-simplicial diagrams
If this were the case, then our characterisation would be a more general notion of
internal or uniform diagrams, as opposed to the external version presented at the
start of this section

Thank you for listening to my talk!

