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What is type theory?

Astra Kolomatskaia



1
Logic



A Motivating Problem

Scenario: Imagine that you are in a room that has a vending machine that sells
walnuts in shells and another vending machine that sells nutcrackers, and that
you have a bag of coins. How would you get food?

Solution: Suppose that you are in a room with these three things, then you
would take a coin and put it in each of the machines to get a walnut and
nutcracker. You would then put the walnut in the nutcracker and get food.

In Notation:
𝜆 𝑣𝑤. 𝜆 𝑣𝑛𝑐. 𝜆 𝑐. (𝑣𝑛𝑐 𝑐) (𝑣𝑤 𝑐)
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Parsing Conditional Statements

if it is raining,

then

(

if I am going out,

then

(

if I have an umbrella at home,

then I should take an umbrella with me

))

We write this as: A → B → C → D for A → (B → (C → D))
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The Walnut Example

Let:
A be the type of walnuts
B be the type of food
C be the type of coins

A walnut vending machine has type C → A
A nutcracker vending machine has type C → A → B
A coin has type C

The scenario that we described has type:

(C → A) → (C → A → B) → C → B



Propositions in Minimal Logic
A proposition is either a logical atom or an arrow:

logical atom 𝑋 = A | B | C | …

proposition 𝑇 = 𝑋 logical atom
| 𝑇 → 𝑇 arrow

For example, we have:

A → ((B → (C → A)) → B)

which we can more succinctly write as:

A → (B → C → A) → B
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Contexts and Judgments in Minimal Logic

Contexts are a list of propositions that we take as given
For example, we could assume (A , A → B)
We typically denote variable contexts as Γ

From a context and a proposition, we can form the judgment Γ ⊢ 𝑇
This called a sequent and is read as: Γ proves 𝑇
We also consider the judgment 𝑇 ∈ Γ
This is read as: 𝑇 is an assumption in Γ
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Contexts and Judgments in Minimal Logic [cont.]

context Γ = ( ) empty
| (Γ , 𝑇) extension

judgement 𝒥 = 𝑇 ∈ Γ lookup
| Γ ⊢ 𝑇 sequent

For example, we can form judgments like:

A ⊢ A
A , A → B ⊢ B

( ) ⊢ A → (A → B) → B
( ) ⊢ A



Reasonability

The judgment:
( ) ⊢ A → (A → B) → B

Is more reasonable than the judgment:

( ) ⊢ A

Since we know nothing about the atom A, so it should not follow from nothing

How do we distinguish which statements are reasonable?

We will discuss two such notions: truth and proof
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Truth

We will discuss a notion of truth known as the Boolean interpretation
This was originally introduced by Wittgenstein in the Tractatus
This notion of truth has to do with a semantics of possible states of affairs

Denote the truth values by ⊤ (true) and ⊥ (false)
Any atom A can either be ⊤ or ⊥, and we have to account for all possibilities
For example, in A → A, if A is true, then we get ⊤ → ⊤, which is true, and if A
is false, we get ⊥ → ⊥, which is also true, so A → A is true independent of the
state of affairs
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Truth [cont.]
For atoms, we don’t know their truth values, so we consider all possibilities
A valuation is a function 𝜈 ∶ Atom → {⊤, ⊥}
Any valuation 𝜈 ∶ Atom → {⊤, ⊥} can be extended to ⟨ – ⟩𝜈 ∶ Prop → {⊤, ⊥}
This is defined by:

⟨ 𝑋 ⟩𝜈 ≡ 𝜈(𝑋)
⟨ 𝑇 → 𝑊 ⟩𝜈 ≡ ⟨ 𝑇 ⟩𝜈 → ⟨ 𝑊 ⟩𝜈

Where → on truth values is defined by the table:
𝑊

𝑇 → 𝑊 ⊤ ⊥

𝑇 ⊤ ⊤ ⊥
⊥ ⊤ ⊤



Truth [cont.]

Given a context Γ, a valuation 𝜈 ∶ Atom → {⊤, ⊥} is said to be admissible if for
every 𝑇 ∈ Γ, we have ⟨ 𝑇 ⟩𝜈 ≡ ⊤

Given a sequent Γ ⊢ 𝑇, the sequent is said to be true if for every admissible
valuation 𝜈, we have ⟨ 𝑇 ⟩𝜈 ≡ ⊤

We only care about the values of 𝜈 on atoms that actually appear in the sequent



Truth [cont.]

For example, consider:
( ) ⊢ A

Let 𝜈 be defined by 𝜈(A) ≡ ⊥, then 𝜈 is vacuously admissible in the empty
context and ⟨ A ⟩𝜈 ≡ ⊥
This judgment is therefore not true, as we have constructed a countermodel

On the other hand, if 𝜈 is admissible in the context (A), then 𝜈(A) ≡ ⊤
Therefore the following judgment is true:

A ⊢ A



Truth [cont.]

For one last example, consider:

( ) ⊢ A → (A → B) → B

Considering all four valuations defined on A and B, we get:

A B ⟨ A → (A → B) → B ⟩𝜈
⊤ ⊤ ⊤ → ((⊤ → ⊤) → ⊤) ≡ ⊤ → (⊤ → ⊤) ≡ ⊤ → ⊤ ≡ ⊤
⊤ ⊥ ⊤ → ((⊤ → ⊥) → ⊥) ≡ ⊤ → (⊥ → ⊥) ≡ ⊤ → ⊤ ≡ ⊤
⊥ ⊤ ⊥ → ((⊥ → ⊤) → ⊤) ≡ ⊥ → (⊤ → ⊤) ≡ ⊥ → ⊤ ≡ ⊤
⊥ ⊥ ⊥ → ((⊥ → ⊥) → ⊥) ≡ ⊥ → (⊤ → ⊥) ≡ ⊥ → ⊥ ≡ ⊤

Since all valuations result in ⊤ on the formula, the judgment is true



Proof
Truth requires looking at an exponential number of valuations in terms of the
number of atoms in the sequent
Is there a more efficient way to establish the validity of a sequent?
Yes, via proof!

We introduce proof rules:

𝑇 ∈ (Γ , 𝑇)
zv

𝑇 ∈ Γ
𝑇 ∈ (Γ , 𝑊)

sv

𝑇 ∈ Γ
Γ ⊢ 𝑇

Var
Γ , 𝑇 ⊢ 𝑊

Γ ⊢ 𝑇 → 𝑊
→I

Γ ⊢ 𝑇 → 𝑊 Γ ⊢ 𝑇
Γ ⊢ 𝑊

→E
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Proof [cont.]

We are then able to chain proof rules together to form proof trees
For example:

A → B ∈ (A , A → B)
zv

A , A → B ⊢ A → B
Var

A ∈ (A)
zv

A ∈ (A , A → B)
sv

A , A → B ⊢ A
Var

A , A → B ⊢ B
→E

A ⊢ (A → B) → B
→I

⊢ A → (A → B) → B
→I



BHK Interpretation

What does a proof of 𝑇 → 𝑊 mean?

From a constructive perspective, treat propositions as mathematical objects
naively thought of as the set of their proofs
Write Γ ⊢ 𝑡 ∶ 𝑇 for ‘Γ proves 𝑇 with proof 𝑡’
A proof of 𝑇 → 𝑊 is a construction that takes a proof of 𝑇 and produces a proof
of 𝑊, thus think of 𝑇 → 𝑊 as the function space between proofs of 𝑇 and 𝑊
Given a formula with a last free variable Γ , 𝑥 ∶ 𝑇 ⊢ 𝑡 ∶ 𝑊, we can abstract over
the variable to form a function Γ ⊢ 𝜆 (𝑥 ∶ 𝑇) . 𝑡 ∶ 𝑇 → 𝑊
Given a proof of Γ ⊢ 𝑓 ∶ 𝑇 → 𝑊 and a proof Γ ⊢ 𝑡 ∶ 𝑇, we can apply the function
to form a proof Γ ⊢ 𝑓 𝑡 ∶ 𝑊



Proof Terms

We define a language of functions:

type 𝑇 = 𝑋 base
| 𝑇 → 𝑇 arrow

term 𝑡 = 𝑥 variable
| 𝜆 (𝑥 ∶ 𝑇) . 𝑡 abstraction
| 𝑡 𝑡 application

Sample proof terms are:

𝜆 (𝑎 ∶ A) . 𝑎
𝜆 (𝑎 ∶ A) . 𝜆 (𝑓 ∶ A → B) . 𝑓 𝑎



Proof Terms [cont.]

Applications are left associative and the scope of abstractions extend maximally
to their right
Thus the term:

𝜆 (𝑓 ∶ A → B → C) . 𝜆 (𝑎 ∶ A) . 𝜆 (𝑏 ∶ B) . 𝑓 𝑎 𝑏

Denotes the fully parenthesised expression:

𝜆 (𝑓 ∶ A → (B → C)) . (𝜆 (𝑎 ∶ A) . (𝜆 (𝑏 ∶ B) . ((𝑓 𝑎) 𝑏)))



Simply Typed Lambda Calculus

We adjust the judgments and proof rules from before to account for terms
Contexts Γ now become lists of variable bindings, such as (𝑎 ∶ A , 𝑓 ∶ A → B)
Variable lookups assert that a certain binding is in the context (𝑥 ∶ 𝑇) ∈ Γ
Sequents take the form Γ ⊢ 𝑡 ∶ 𝑇, and are read as ‘Γ proves 𝑇 with proof 𝑡’

context Γ = ( ) empty
| (Γ , 𝑥 ∶ 𝑇) extension

judgement 𝒥 = (𝑥 ∶ 𝑇) ∈ Γ lookup
| Γ ⊢ 𝑡 ∶ 𝑇 sequent



Simply Typed Lambda Calculus [cont.]

The old proof rules for minimal logic were:

𝑇 ∈ Γ
Γ ⊢ 𝑇

Var
Γ , 𝑇 ⊢ 𝑊

Γ ⊢ 𝑇 → 𝑊
→I

Γ ⊢ 𝑇 → 𝑊 Γ ⊢ 𝑇
Γ ⊢ 𝑊

→E

The new proof rules for simply typed lambda calculus are:

(𝑥 ∶ 𝑇) ∈ Γ
Γ ⊢ 𝑥 ∶ 𝑇

Var
Γ , 𝑥 ∶ 𝑇 ⊢ 𝑡 ∶ 𝑊

Γ ⊢ 𝜆 (𝑥 ∶ 𝑇) . 𝑡 ∶ 𝑇 → 𝑊
→I

Γ ⊢ 𝑡 ∶ 𝑇 → 𝑊 Γ ⊢ 𝑠 ∶ 𝑇
Γ ⊢ 𝑡 𝑠 ∶ 𝑊

→E



Simply Typed Lambda Calculus [cont.]
Our proof tree from before becomes:

𝑎 ∶ A , 𝑓 ∶ A → B ⊢ 𝑓 ∶ A → B
Var

𝑎 ∶ A , 𝑓 ∶ A → B ⊢ 𝑎 ∶ A
Var

𝑎 ∶ A , 𝑓 ∶ A → B ⊢ 𝑓 𝑎 ∶ B
→E

𝑎 ∶ A ⊢ 𝜆 (𝑓 ∶ A → B) . 𝑓 𝑎 ∶ (A → B) → B
→I

⊢ 𝜆 (𝑎 ∶ A) . 𝜆 (𝑓 ∶ A → B) . 𝑓 𝑎 ∶ A → (A → B) → B
→I

Note that at each step, the syntactic category in the conclusion of the rule tells
us which rule was applied
The proof tree can thus be recovered uniquely from a well-typed term

⊢ 𝜆 (𝑎 ∶ A) . 𝜆 (𝑓 ∶ A → B) . 𝑓 𝑎 ∶ A → (A → B) → B



Walnut Example
Let:
A be the type of walnuts
B be the type of food
C be the type of coins

Goal:
(C → A) → (C → A → B) → C → B

Proof:

𝜆 (𝑣𝑤 ∶ C → A) . 𝜆 (𝑣𝑛𝑐 ∶ C → A → B) . 𝜆 (𝑐 ∶ C) . (𝑣𝑛𝑐 𝑐) (𝑣𝑤 𝑐)

Omitting type annotations:

𝜆 𝑣𝑤. 𝜆 𝑣𝑛𝑐. 𝜆 𝑐. (𝑣𝑛𝑐 𝑐) (𝑣𝑤 𝑐)



Computation

Functions defined by formulas are dynamic objects, and evaluating a formula on
an input should result in computation
This leads to the 𝛽 and 𝜂 laws:

Γ , 𝑥 ∶ 𝑇 ⊢ 𝑡 ∶ 𝑊 Γ ⊢ 𝑠 ∶ 𝑇
Γ ⊢ (𝜆 𝑥. 𝑡) 𝑠 ≡ 𝑡 [𝑥 ↦ 𝑠] ∶ 𝑊

𝛽
Γ ⊢ 𝑡 ∶ 𝑇 → 𝑊

Γ ⊢ 𝑡 ≡ 𝜆 𝑥. 𝑡 𝑥 ∶ 𝑇 → 𝑊
𝜂

For example, six applications of the 𝛽 law yield the following definitional equality:

(𝜆 𝑛. 𝜆 𝑚. 𝜆 𝑧. 𝜆 𝑠. 𝑛 (𝑚 𝑧 𝑠) 𝑠) (𝜆 𝑧. 𝜆 𝑠. 𝑠 (𝑠 𝑧)) (𝜆 𝑧. 𝜆 𝑠. 𝑠 (𝑠 𝑧))
≡ 𝜆 𝑧. 𝜆 𝑠. 𝑠 (𝑠 (𝑠 (𝑠 𝑧)))

This is known as the computation that 2 + 2 = 4 in Church arithmetic



2
Categories



Categories

A category 𝒞 consists of a collection of object ob𝒞 and, for every two objects
𝐴 𝐵 ∶ ob𝒞, a collection of morphisms mor𝒞(𝐴, 𝐵)
This is equipped with a composition operation

– ∘ – ∶ mor𝒞(𝐵, 𝐶) × mor𝒞(𝐴, 𝐵) → mor𝒞(𝐴, 𝐶)

That is associative and has units 1𝐴 ∶ mor𝒞(𝐴, 𝐴) satisfying the left and right
identity laws
We write 𝑓 ∶ 𝐴 → 𝐵 for 𝑓 ∶ mor𝒞(𝐴, 𝐵)



Terminal Objects and Products
A category 𝒞 has a terminal object 𝟙 ∶ ob𝒞 if for every object Γ ∶ ob𝒞 there is a
unique morphism ! ∶ Γ → 𝟙

A category 𝒞 has products if for every Γ, 𝑇 ∶ ob𝒞 there is an object Γ × 𝑇 ∶ ob𝒞
along with projections 𝜋 ∶ Γ × 𝑇 → Γ, 𝑧 ∶ Γ × 𝑇 → 𝑇 such that for any Δ ∶ ob𝒞
along with 𝑓 ∶ Δ → Γ and 𝑔 ∶ Δ → 𝑇, there is a unique ⟨ 𝑓 , 𝑔 ⟩ ∶ Δ → Γ × 𝑇
satisfying 𝜋 ∘ ⟨ 𝑓 , 𝑔 ⟩ = 𝑓 and 𝑧 ∘ ⟨ 𝑓 , 𝑔 ⟩ = 𝑔

Δ

Γ × 𝑇 Γ

𝑇

𝑓

𝑔

⟨ 𝑓 , 𝑔 ⟩

𝜋

𝑧
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Cartesian Closed Categories
A category with products 𝒞 is cartesian closed if for every 𝑇, 𝑊 ∶ ob𝒞, there is a
natural family of bijections mor𝒞 (Γ × 𝑇, 𝑊) ≅ mor𝒞 (Γ, 𝑇 ⇒ 𝑊) for some
representing object 𝑇 ⇒ 𝑊 ∶ ob𝒞

This means that there is Λ ∶ mor𝒞 (Γ × 𝑇, 𝑊) → mor𝒞 (Γ, 𝑇 ⇒ 𝑊) and
App ∶ mor𝒞 (Γ, 𝑇 ⇒ 𝑊) → mor𝒞 (Γ × 𝑇, 𝑊) that are mutually inverse, and
naturality of App in Γ means that for 𝑓 ∶ Γ → 𝑇 ⇒ 𝑊 and 𝑔 ∶ Δ → Γ, then
App (𝑓 ∘ 𝑔) ≡ (App 𝑓) ∘ ⟨ 𝑔 ∘ 𝜋 , 𝑧 ⟩
From this we can define:

app ∶ mor𝒞 (Γ, 𝑇 ⇒ 𝑊) → mor𝒞 (Γ, 𝑇) → mor𝒞 (Γ, 𝑊)

By:
app 𝑓 𝑔 = (App 𝑓) ∘ ⟨ 1Γ , 𝑔 ⟩
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natural family of bijections mor𝒞 (Γ × 𝑇, 𝑊) ≅ mor𝒞 (Γ, 𝑇 ⇒ 𝑊) for some
representing object 𝑇 ⇒ 𝑊 ∶ ob𝒞

This means that there is Λ ∶ mor𝒞 (Γ × 𝑇, 𝑊) → mor𝒞 (Γ, 𝑇 ⇒ 𝑊) and
App ∶ mor𝒞 (Γ, 𝑇 ⇒ 𝑊) → mor𝒞 (Γ × 𝑇, 𝑊) that are mutually inverse, and
naturality of App in Γ means that for 𝑓 ∶ Γ → 𝑇 ⇒ 𝑊 and 𝑔 ∶ Δ → Γ, then
App (𝑓 ∘ 𝑔) ≡ (App 𝑓) ∘ ⟨ 𝑔 ∘ 𝜋 , 𝑧 ⟩
From this we can define:

app ∶ mor𝒞 (Γ, 𝑇 ⇒ 𝑊) → mor𝒞 (Γ, 𝑇) → mor𝒞 (Γ, 𝑊)

By:
app 𝑓 𝑔 = (App 𝑓) ∘ ⟨ 1Γ , 𝑔 ⟩



𝛽 and 𝜂 laws in CCCs

Γ , 𝑥 ∶ 𝑇 ⊢ 𝑡 ∶ 𝑊 Γ ⊢ 𝑠 ∶ 𝑇
Γ ⊢ (𝜆 𝑥. 𝑡) 𝑠 ≡ 𝑡 [𝑥 ↦ 𝑠] ∶ 𝑊

𝛽

First, for 𝑡 ∶ Γ × 𝑇 → 𝑊 and 𝑠 ∶ Γ → 𝑇, we have:

app (Λ 𝑡) 𝑠
≡ (App (Λ 𝑡)) ∘ ⟨ 1Γ , 𝑠 ⟩
≡ 𝑡 ∘ ⟨ 1Γ , 𝑠 ⟩



𝛽 and 𝜂 laws in CCCs [cont.]

Γ ⊢ 𝑡 ∶ 𝑇 → 𝑊
Γ ⊢ 𝑡 ≡ 𝜆 𝑥. 𝑡 𝑥 ∶ 𝑇 → 𝑊

𝜂

Next, for 𝑓 ∶ Γ → 𝑇 ⇒ 𝑊, we have:
Λ (app (𝑓 ∘ 𝜋) 𝑧)
≡ Λ ((App (𝑓 ∘ 𝜋)) ∘ ⟨ 1Γ × 𝑇 , 𝑧 ⟩)
≡ Λ ((App 𝑓) ∘ ⟨ 𝜋 ∘ 𝜋 , 𝑧 ⟩ ∘ ⟨ 1Γ × 𝑇 , 𝑧 ⟩)
≡ Λ ((App 𝑓) ∘ ⟨ 𝜋 ∘ 𝜋 ∘ ⟨ 1Γ × 𝑇 , 𝑧 ⟩ , 𝑧 ∘ ⟨ 1Γ × 𝑇 , 𝑧 ⟩ ⟩)
≡ Λ ((App 𝑓) ∘ ⟨ 𝜋 , 𝑧 ⟩)
≡ Λ ((App 𝑓) ∘ 1Γ × 𝑇)
≡ Λ (App 𝑓)
≡ 𝑓



Interpreting STLC

Suppose we consider STLC with only one logical atom A
Refer to the set of types as Ty, the set of contexts as Ctx, the set of variables of
type 𝑇 in context Γ as Var Γ 𝑇, and the set of terms of type 𝑇 in context Γ as
Tm Γ 𝑇
Now suppose that 𝒞 is a cartesian closed category and that we choose an object
Base ∶ ob𝒞

We now define a collection of interpretations using Agda-esque pattern matching
notation



Interpreting STLC [cont.]

Types:

[[–]] ∶ Ty → ob𝒞

[[ A ]] ≡ Base
[[ 𝑇 → 𝑊 ]] ≡ [[ 𝑇 ]] ⇒ [[ 𝑊 ]]

Contexts:

[[–]] ∶ Ctx → ob𝒞

[[ ( ) ]] ≡ 𝟙
[[ (Γ , 𝑥 ∶ 𝑇) ]] ≡ [[ Γ ]] × [[ 𝑇 ]]



Interpreting STLC [cont.]

Variables:

[[–]] ∶ Var Γ 𝑇 → mor𝒞 ([[ Γ ]], [[ 𝑇 ]])
[[ zv ]] ≡ 𝑧
[[ sv 𝑣 ]] ≡ [[ 𝑣 ]] ∘ 𝜋

Terms:

[[–]] ∶ Tm Γ 𝑇 → mor𝒞 ([[ Γ ]], [[ 𝑇 ]])
[[ var 𝑣 ]] ≡ [[ 𝑣 ]]
[[ 𝜆 𝑥. 𝑡 ]] ≡ Λ [[ 𝑡 ]]
[[ 𝑡 𝑠 ]] ≡ app [[ 𝑡 ]] [[ 𝑠 ]]



Summary

The categorical logic of STLC is a generalisation of the Boolean semantics
The latter is a special case of the full subcategory of Set on the objects ⊥ = { }
⊤ = {⋆}

STLC is not complete with respect to Boolean semantics
This is because Peirce’s law ((A → B) → A) → A is true but not provable as it is
equivalent to LEM
But STLC is complete with respect to its categorical logic
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Thank you for listening to my talk!


