

What is type theory?

Astra Kolomatskaia

SCENARIO: Imagine that you are in a room that has a vending machine that sells walnuts in shells and another vending machine that sells nutcrackers, and that you have a bag of coins. How would you get food?

SCENARIO: Imagine that you are in a room that has a vending machine that sells walnuts in shells and another vending machine that sells nutcrackers, and that you have a bag of coins. How would you get food?

SOLUTION: Suppose that you are in a room with these three things, then you would take a coin and put it in each of the machines to get a walnut and nutcracker. You would then put the walnut in the nutcracker and get food.

SCENARIO: Imagine that you are in a room that has a vending machine that sells walnuts in shells and another vending machine that sells nutcrackers, and that you have a bag of coins. How would you get food?

SOLUTION: Suppose that you are in a room with these three things, then you would take a coin and put it in each of the machines to get a walnut and nutcracker. You would then put the walnut in the nutcracker and get food.

IN NOTATION:

$$\lambda v_w$$
. λv_{nc} . λc . $(v_{nc} c) (v_w c)$

if it is raining,

then if I am going out,

then if I have an umbrella at home,

then I should take an umbrella with me

if it is raining,

then (if I am going out,

then if I have an umbrella at home,

then I should take an umbrella with me

if it is raining,

then (if I am going out, then (if I have an umbrella at home,

then I should take an umbrella with me)

We write this as: $A \rightarrow B \rightarrow C \rightarrow D$ for $A \rightarrow (B \rightarrow (C \rightarrow D))$

The Walnut Example

Let: A be the type of walnuts B be the type of food C be the type of coins

A walnut vending machine has type C \to A A nutcracker vending machine has type C \to A \to B A coin has type C

The scenario that we described has type:

$$(\mathsf{C} \to \mathsf{A}) \to (\mathsf{C} \to \mathsf{A} \to \mathsf{B}) \to \mathsf{C} \to \mathsf{B}$$

Propositions in Minimal Logic

A proposition is either a logical atom or an arrow:

Propositions in Minimal Logic

A proposition is either a logical atom or an arrow:

 $\begin{array}{rcl} \textit{logical atom} & X &=& \mathsf{A} \mid \mathsf{B} \mid \mathsf{C} \mid \dots \\ \\ \textit{proposition} & T &=& X & \textit{logical atom} \\ & \mid & T \rightarrow T & \textit{arrow} \end{array}$

For example, we have:

$$\mathsf{A} \to ((\mathsf{B} \to (\mathsf{C} \to \mathsf{A})) \to \mathsf{B})$$

which we can more succinctly write as:

$$\mathsf{A} \to (\mathsf{B} \to \mathsf{C} \to \mathsf{A}) \to \mathsf{B}$$

Contexts and Judgments in Minimal Logic

Contexts are a list of propositions that we take as given For example, we could assume $(A, A \rightarrow B)$ We typically denote variable contexts as Γ Contexts are a list of propositions that we take as given For example, we could assume (A , A \rightarrow B)

We typically denote variable contexts as Γ

From a context and a proposition, we can form the judgment $\Gamma \vdash T$ This called a sequent and is read as: Γ proves TWe also consider the judgment $T \in \Gamma$ This is read as: T is an assumption in Γ

Contexts and Judgments in Minimal Logic [cont.]

$$\begin{array}{ccc} \textit{context} & \Gamma &= & () & \textit{empty} \\ & & | & (\Gamma, T) & \textit{extension} \end{array}$$
$$\textit{judgement} & \mathcal{J} &= & T \in \Gamma & \textit{lookup} \\ & & | & \Gamma \vdash T & \textit{sequent} \end{array}$$

For example, we can form judgments like:

$$A \vdash A$$

A, A \rightarrow B \box B
() \box A \rightarrow (A \rightarrow B) \rightarrow B
() \box A

The judgment:

$$() \vdash \mathsf{A} \to (\mathsf{A} \to \mathsf{B}) \to \mathsf{B}$$

Is more reasonable than the judgment:

 $() \vdash \mathsf{A}$

Since we know nothing about the atom A, so it should not follow from nothing

The judgment:

$$() \vdash \mathsf{A} \to (\mathsf{A} \to \mathsf{B}) \to \mathsf{B}$$

Is more reasonable than the judgment:

 $() \vdash \mathsf{A}$

Since we know nothing about the atom A, so it should not follow from nothing

How do we distinguish which statements are reasonable?

We will discuss two such notions: truth and proof

We will discuss a notion of *truth* known as the *Boolean interpretation* This was originally introduced by Wittgenstein in the Tractatus This notion of truth has to do with a semantics of *possible states of affairs* We will discuss a notion of *truth* known as the *Boolean interpretation* This was originally introduced by Wittgenstein in the Tractatus This notion of truth has to do with a semantics of *possible states of affairs*

Denote the truth values by \top (true) and \perp (false)

Any atom A can either be \top or \bot , and we have to account for all possibilities

For example, in A \rightarrow A, if A is true, then we get $\top \rightarrow \top$, which is true, and if A is false, we get $\bot \rightarrow \bot$, which is also true, so A \rightarrow A is true independent of the state of affairs

Truth [cont.]

For atoms, we don't know their truth values, so we consider all possibilities A *valuation* is a function ν : Atom $\rightarrow \{\top, \bot\}$ Any valuation ν : Atom $\rightarrow \{\top, \bot\}$ can be extended to $\langle - \rangle_{\nu}$: Prop $\rightarrow \{\top, \bot\}$ This is defined by:

$$\begin{split} \langle X \rangle_{\nu} &\equiv \nu(X) \\ \langle T \to W \rangle_{\nu} &\equiv \langle T \rangle_{\nu} \to \langle W \rangle_{\nu} \end{split}$$

Where \rightarrow on truth values is defined by the table:

 $\begin{array}{c|c} & & W \\ \hline T \rightarrow W & \top & \bot \\ \hline T & \top & \top & \bot \\ T & \bot & \top & \top \end{array}$

Given a context Γ , a valuation $\nu : \operatorname{Atom} \to \{\top, \bot\}$ is said to be *admissible* if for every $T \in \Gamma$, we have $\langle T \rangle_{\nu} \equiv \top$

Given a sequent $\Gamma \vdash T$, the sequent is said to be *true* if for every admissible valuation ν , we have $\langle T \rangle_{\nu} \equiv \top$

We only care about the values of ν on atoms that actually appear in the sequent

For example, consider:

$() \vdash \mathsf{A}$

Let ν be defined by $\nu(A) \equiv \bot$, then ν is vacuously admissible in the empty context and $\langle A \rangle_{\nu} \equiv \bot$

This judgment is therefore not true, as we have constructed a *countermodel*

On the other hand, if ν is admissible in the context (A), then $\nu(A) \equiv \top$ Therefore the following judgment is true:

 $\mathsf{A} \vdash \mathsf{A}$

Truth [cont.]

For one last example, consider:

$$() \vdash \mathsf{A} \to (\mathsf{A} \to \mathsf{B}) \to \mathsf{B}$$

Considering all four valuations defined on A and B, we get:

Since all valuations result in op on the formula, the judgment is true

Proof

Truth requires looking at an exponential number of valuations in terms of the number of atoms in the sequent

Is there a more efficient way to establish the validity of a sequent? Yes, via *proof!*

Proof

Truth requires looking at an exponential number of valuations in terms of the number of atoms in the sequent

Is there a more efficient way to establish the validity of a sequent? Yes, via *proof*!

We introduce proof rules:

$$\frac{T \in \Gamma}{T \in (\Gamma, T)}^{\mathsf{ZV}} \qquad \frac{T \in \Gamma}{T \in (\Gamma, W)}^{\mathsf{SV}}$$

$$\frac{T \in \Gamma}{F + T} \mathsf{Var} \qquad \frac{\Gamma, T \vdash W}{\Gamma \vdash T \to W} \xrightarrow{\Gamma} \qquad \frac{\Gamma \vdash T \to W \quad \Gamma \vdash T}{\Gamma \vdash W} \xrightarrow{\Gamma}_{\mathsf{E}}$$

Proof [cont.]

We are then able to chain proof rules together to form *proof trees* For example:

$$\frac{\overline{A \to B \in (A, A \to B)}^{ZV}}{A, A \to B \vdash A \to B} Var \qquad \frac{\overline{A \in (A)}^{ZV}}{A \in (A, A \to B)} Var \\ \overline{A, A \to B \vdash A \to B} Var \qquad \overline{A, A \to B \vdash A} Var \\ \overline{A, A \to B \vdash B} \rightarrow_{E} \\ \overline{A \vdash (A \to B) \to B} \rightarrow_{I} \\ \overline{A \vdash (A \to B) \to B} \rightarrow_{I}$$

BHK Interpretation

What does a proof of $T \rightarrow W$ mean?

From a constructive perspective, treat propositions as mathematical objects *naively* thought of as the set of their proofs

Write $\Gamma \vdash t : T$ for ' Γ proves T with proof t'

A proof of $T \to W$ is a *construction* that takes a proof of T and produces a proof of W, thus think of $T \to W$ as the *function space* between proofs of T and W

Given a formula with a last free variable Γ , $x: T \vdash t : W$, we can abstract over the variable to form a function $\Gamma \vdash \lambda$ (x:T). $t: T \rightarrow W$

Given a proof of $\Gamma \vdash f: T \to W$ and a proof $\Gamma \vdash t: T$, we can apply the function to form a proof $\Gamma \vdash f t: W$

Proof Terms

We define a language of functions:

Sample proof terms are:

$$\begin{array}{l} \lambda \ (a:\mathsf{A}) \, . \, a \\ \lambda \ (a:\mathsf{A}) \, . \, \lambda \ (f:\mathsf{A}\to\mathsf{B}) \, . \, f \, a \end{array}$$

Applications are left associative and the scope of abstractions extend maximally to their right

Thus the term:

$$\lambda \ (f: \mathsf{A} \to \mathsf{B} \to \mathsf{C}) \,. \, \lambda \ (a: \mathsf{A}) \,. \, \lambda \ (b: \mathsf{B}) \,. \, f \, a \, b$$

Denotes the fully parenthesised expression:

 $\lambda \ (f:\mathsf{A}\to(\mathsf{B}\to\mathsf{C})) \ . \ (\lambda \ (a:\mathsf{A}) \ . \ (\lambda \ (b:\mathsf{B}) \ . \ ((f \ a) \ b)))$

We adjust the judgments and proof rules from before to account for terms Contexts Γ now become lists of variable bindings, such as $(a : A, f : A \rightarrow B)$ Variable lookups assert that a certain binding is in the context $(x : T) \in \Gamma$ Sequents take the form $\Gamma \vdash t : T$, and are read as ' Γ proves T with proof t'

 $egin{array}{rcl} {\it context} & \Gamma &= () & {\it empty} \ & \mid & (\Gamma\,,\,x:T) & {\it extension} \end{array}$ $egin{array}{rcl} {\it judgement} & \mathcal{J} &= (x:T) \in \Gamma & {\it lookup} \ & \mid & \Gamma \vdash t:T & {\it sequent} \end{array}$

Simply Typed Lambda Calculus [cont.]

The old proof rules for *minimal logic* were:

$$\frac{T \in \Gamma}{\Gamma \vdash T} \mathsf{Var} \qquad \qquad \frac{\Gamma, T \vdash W}{\Gamma \vdash T \to W} \to_{\mathsf{I}} \qquad \qquad \frac{\Gamma \vdash T \to W \quad \Gamma \vdash T}{\Gamma \vdash W} \to_{\mathsf{E}}$$

The new proof rules for simply typed lambda calculus are:

$$\frac{(x:T) \in \Gamma}{\Gamma \vdash x:T} \text{Var} \qquad \frac{\Gamma, x:T \vdash t:W}{\Gamma \vdash \lambda \ (x:T).t:T \to W} \to \frac{\Gamma \vdash t:T \to W \qquad \Gamma \vdash s:T}{\Gamma \vdash t \ s:W} \to_{\mathsf{E}}$$

Simply Typed Lambda Calculus [cont.]

Our proof tree from before becomes:

$$\frac{\overline{a:A, f:A \to B \vdash f:A \to B}^{\mathsf{Var}} \qquad \overline{a:A, f:A \to B \vdash a:A}^{\mathsf{Var}}}{a:A, f:A \to B \vdash fa:B} \to_{\mathsf{E}}$$

$$\frac{a:A \vdash \lambda \ (f:A \to B) \cdot fa:(A \to B) \to B}{\vdash \lambda \ (a:A) \cdot \lambda \ (f:A \to B) \cdot fa:A \to (A \to B) \to B} \to_{\mathsf{I}}$$

Note that at each step, the syntactic category in the conclusion of the rule tells us which rule was applied

The proof tree can thus be recovered uniquely from a well-typed term

$$\vdash \lambda \ (a:A) . \lambda \ (f:A \to B) . f a:A \to (A \to B) \to B$$

Walnut Example

Let:

A be the type of walnuts B be the type of food C be the type of coins

Goal:

$$(\mathsf{C}\to\mathsf{A})\to(\mathsf{C}\to\mathsf{A}\to\mathsf{B})\to\mathsf{C}\to\mathsf{B}$$

Proof:

$$\lambda \ (v_w:\mathsf{C}\to\mathsf{A})\,.\;\lambda \ (v_{nc}:\mathsf{C}\to\mathsf{A}\to\mathsf{B})\,.\;\lambda \ (c:\mathsf{C})\,.\;(v_{nc}\;c) \ (v_w\;c)$$

Omitting type annotations:

$$\lambda v_w$$
. λv_{nc} . λc . $(v_{nc} c) (v_w c)$

Computation

Functions defined by formulas are dynamic objects, and evaluating a formula on an input should result in computation

This leads to the β and η laws:

$$\frac{\Gamma , x: T \vdash t: W \qquad \Gamma \vdash s: T}{\Gamma \vdash (\lambda x. t) \ s \equiv t \ [x \mapsto s]: W} \beta \qquad \qquad \frac{\Gamma \vdash t: T \to W}{\Gamma \vdash t \equiv \lambda x. \ t \ x: T \to W} \eta$$

For example, six applications of the β law yield the following definitional equality:

 $\begin{array}{l} (\lambda \ n. \ \lambda \ m. \ \lambda \ z. \ \lambda \ s. \ n \ (m \ z \ s) \ s) \ (\lambda \ z. \ \lambda \ s. \ s \ (s \ z)) \\ \equiv \lambda \ z. \ \lambda \ s. \ s \ (s \ (s \ z))) \end{array}$

This is known as the computation that 2 + 2 = 4 in *Church arithmetic*

A category $\mathcal C$ consists of a collection of object $\mathsf{ob}_{\mathcal C}$ and, for every two objects A $B:\mathsf{ob}_{\mathcal C}$, a collection of morphisms $\mathsf{mor}_{\mathcal C}(A,\,B)$

This is equipped with a composition operation

 $-\circ -: \operatorname{mor}_{\operatorname{\mathcal{C}}}(B, \operatorname{C}) \times \operatorname{mor}_{\operatorname{\mathcal{C}}}(A, \operatorname{B}) \to \operatorname{mor}_{\operatorname{\mathcal{C}}}(A, \operatorname{C})$

That is associative and has units $1_A:\mathsf{mor}_{\mathcal{C}}(A,\,A)$ satisfying the left and right identity laws

We write $f: A \to B$ for $f: \operatorname{mor}_{\mathcal{C}}(A, B)$

Terminal Objects and Products

A category \mathcal{C} has a *terminal object* $1 : ob_{\mathcal{C}}$ if for every object $\Gamma : ob_{\mathcal{C}}$ there is a *unique* morphism $! : \Gamma \to 1$

Terminal Objects and Products

A category \mathcal{C} has a *terminal object* $1 : ob_{\mathcal{C}}$ if for every object $\Gamma : ob_{\mathcal{C}}$ there is a *unique* morphism $! : \Gamma \to 1$

A category \mathcal{C} has *products* if for every Γ , $T: ob_{\mathcal{C}}$ there is an object $\Gamma \times T: ob_{\mathcal{C}}$ along with projections $\pi: \Gamma \times T \to \Gamma$, $z: \Gamma \times T \to T$ such that for any $\Delta: ob_{\mathcal{C}}$ along with $f: \Delta \to \Gamma$ and $g: \Delta \to T$, there is a *unique* $\langle f, g \rangle : \Delta \to \Gamma \times T$ satisfying $\pi \circ \langle f, g \rangle = f$ and $z \circ \langle f, g \rangle = g$

Cartesian Closed Categories

A category with products \mathcal{C} is *cartesian closed* if for every $T, W: ob_{\mathcal{C}}$, there is a natural family of bijections $mor_{\mathcal{C}} (\Gamma \times T, W) \cong mor_{\mathcal{C}} (\Gamma, T \Rightarrow W)$ for some representing object $T \Rightarrow W: ob_{\mathcal{C}}$

Cartesian Closed Categories

A category with products \mathcal{C} is *cartesian closed* if for every T, $W: ob_{\mathcal{C}}$, there is a natural family of bijections $\operatorname{mor}_{\mathcal{C}}(\Gamma \times T, W) \cong \operatorname{mor}_{\mathcal{C}}(\Gamma, T \Rightarrow W)$ for some representing object $T \Rightarrow W: ob_{\mathcal{C}}$

This means that there is $\Lambda : \operatorname{mor}_{\mathcal{C}}(\Gamma \times T, W) \to \operatorname{mor}_{\mathcal{C}}(\Gamma, T \Rightarrow W)$ and App : $\operatorname{mor}_{\mathcal{C}}(\Gamma, T \Rightarrow W) \to \operatorname{mor}_{\mathcal{C}}(\Gamma \times T, W)$ that are mutually inverse, and naturality of App in Γ means that for $f : \Gamma \to T \Rightarrow W$ and $g : \Delta \to \Gamma$, then App $(f \circ g) \equiv (\operatorname{App} f) \circ \langle g \circ \pi, z \rangle$

Cartesian Closed Categories

A category with products \mathcal{C} is *cartesian closed* if for every T, $W: ob_{\mathcal{C}}$, there is a natural family of bijections $\operatorname{mor}_{\mathcal{C}}(\Gamma \times T, W) \cong \operatorname{mor}_{\mathcal{C}}(\Gamma, T \Rightarrow W)$ for some representing object $T \Rightarrow W: ob_{\mathcal{C}}$

This means that there is $\Lambda : \operatorname{mor}_{\mathcal{C}}(\Gamma \times T, W) \to \operatorname{mor}_{\mathcal{C}}(\Gamma, T \Rightarrow W)$ and App : $\operatorname{mor}_{\mathcal{C}}(\Gamma, T \Rightarrow W) \to \operatorname{mor}_{\mathcal{C}}(\Gamma \times T, W)$ that are mutually inverse, and naturality of App in Γ means that for $f : \Gamma \to T \Rightarrow W$ and $g : \Delta \to \Gamma$, then App $(f \circ g) \equiv (\operatorname{App} f) \circ \langle g \circ \pi, z \rangle$

From this we can define:

 $\operatorname{app}:\operatorname{mor}_{\mathcal{C}}\left(\Gamma,\ T\!\Rightarrow\!W\right)\to\operatorname{mor}_{\mathcal{C}}\left(\Gamma,\ T\right)\to\operatorname{mor}_{\mathcal{C}}\left(\Gamma,\ W\right)$

By:

$$\mathsf{app}\;f\;g=(\mathsf{App}\;f)\circ\langle\;1_{\Gamma}\;,\,g\;\rangle$$

$$\frac{\Gamma, x: T \vdash t: W \quad \Gamma \vdash s: T}{\Gamma \vdash (\lambda \ x. \ t) \ s \equiv t \ [x \mapsto s]: W} \beta$$

First, for $t: \Gamma \times T \to W$ and $s: \Gamma \to T$, we have:

$$\begin{array}{l} \mathsf{app} \ (\Lambda \ t) \ s \\ \equiv (\mathsf{App} \ (\Lambda \ t)) \circ \langle \ 1_{\Gamma} \ , s \ \rangle \\ \equiv t \circ \langle \ 1_{\Gamma} \ , s \ \rangle \end{array}$$

eta and η laws in CCCs [cont.]

$$\frac{\Gamma \vdash t: T \to W}{\Gamma \vdash t \equiv \lambda \; x. \; t \; x: T \to W} \eta$$

Next, for $f: \Gamma \to T \Rightarrow W$, we have:

 Λ (app $(f \circ \pi) z$) $\equiv \Lambda ((\mathsf{App} (f \circ \pi)) \circ \langle 1_{\Gamma \lor T}, z \rangle)$ $\equiv \Lambda ((\mathsf{App} f) \circ \langle \pi \circ \pi, z \rangle \circ \langle 1_{\mathbf{T} \vee \mathbf{T}}, z \rangle)$ $\equiv \Lambda ((\mathsf{App} f) \circ \langle \pi \circ \pi \circ \langle 1_{\Gamma \lor T}, z \rangle, z \circ \langle 1_{\Gamma \lor T}, z \rangle))$ $\equiv \Lambda ((App f) \circ \langle \pi, z \rangle)$ $\equiv \overline{\Lambda} ((App f) \circ 1_{\Gamma \times T})$ $\equiv \Lambda (App f)$

Suppose we consider STLC with only one logical atom A

Refer to the set of types as Ty, the set of contexts as Ctx, the set of variables of type T in context Γ as Var Γ T, and the set of terms of type T in context Γ as Tm Γ T

Now suppose that $\mathcal C$ is a cartesian closed category and that we choose an object Base $: {\rm ob}_{\mathcal C}$

We now define a collection of interpretations using Agda-esque pattern matching notation

Interpreting STLC [cont.]

TYPES:

$$\begin{split} \llbracket - \rrbracket : \mathsf{Ty} \to \mathsf{ob}_{\mathcal{C}} \\ \llbracket \mathsf{A} \rrbracket \equiv \mathsf{Base} \\ \llbracket T \to W \rrbracket \equiv \llbracket T \rrbracket \Rightarrow \llbracket W \rrbracket \end{split}$$

CONTEXTS:

$$\begin{split} \llbracket - \rrbracket : \mathsf{Ctx} \to \mathsf{ob}_{\mathcal{C}} \\ \llbracket (\) \ \rrbracket \equiv \mathbb{1} \\ \llbracket (\ \Gamma \ , \ x : T) \ \rrbracket \equiv \llbracket \ \Gamma \ \rrbracket \times \llbracket \ T \ \rrbracket \end{split}$$

Interpreting STLC [cont.]

VARIABLES:

$$\begin{split} \llbracket - \rrbracket : \operatorname{Var} \Gamma \ T \to \operatorname{mor}_{\mathcal{C}} \left(\llbracket \ \Gamma \ \rrbracket, \llbracket \ T \ \rrbracket \right) \\ \llbracket \ \operatorname{zv} \ \rrbracket \equiv z \\ \llbracket \ \operatorname{sv} \ v \ \rrbracket \equiv \llbracket \ v \ \rrbracket \circ \pi \end{split}$$

TERMS:

$$\begin{bmatrix} - \end{bmatrix} : \operatorname{Tm} \Gamma T \to \operatorname{mor}_{\mathcal{C}} \left(\begin{bmatrix} \Gamma \end{bmatrix}, \begin{bmatrix} T \end{bmatrix} \right)$$
$$\begin{bmatrix} \operatorname{var} v \end{bmatrix} \equiv \begin{bmatrix} v \end{bmatrix}$$
$$\begin{bmatrix} \lambda x. t \end{bmatrix} \equiv \Lambda \begin{bmatrix} t \end{bmatrix}$$
$$\begin{bmatrix} t s \end{bmatrix} \equiv \operatorname{app} \begin{bmatrix} t \end{bmatrix} \begin{bmatrix} s \end{bmatrix}$$

The *categorical logic* of STLC is a generalisation of the Boolean semantics The latter is a special case of the full subcategory of Set on the objects $\bot = \{ \}$ $\top = \{ \star \}$

- The *categorical logic* of STLC is a generalisation of the Boolean semantics The latter is a special case of the full subcategory of Set on the objects $\bot = \{\}$ $\top = \{\star\}$
- STLC is not complete with respect to Boolean semantics
- This is because Peirce's law $((A \to B) \to A) \to A$ is true but not provable as it is equivalent to LEM
- But STLC is complete with respect to its categorical logic

Thank you for listening to my talk!