oy

What is type theory?

Astra Kolomatskaia

Logic

A Motivating Problem

SCENARIO: Imagine that you are in a room that has a vending machine that sells
walnuts in shells and another vending machine that sells nutcrackers, and that
you have a bag of coins. How would you get food?

A Motivating Problem

SCENARIO: Imagine that you are in a room that has a vending machine that sells
walnuts in shells and another vending machine that sells nutcrackers, and that
you have a bag of coins. How would you get food?

SOLUTION: Suppose that you are in a room with these three things, then you
would take a coin and put it in each of the machines to get a walnut and
nutcracker. You would then put the walnut in the nutcracker and get food.

A Motivating Problem

SCENARIO: Imagine that you are in a room that has a vending machine that sells
walnuts in shells and another vending machine that sells nutcrackers, and that
you have a bag of coins. How would you get food?

SOLUTION: Suppose that you are in a room with these three things, then you
would take a coin and put it in each of the machines to get a walnut and
nutcracker. You would then put the walnut in the nutcracker and get food.

IN NOTATION:
AUy AV, A (v,. ¢) (v, €)

Parsing Conditional Statements

if it is raining,
then if | am going out,
then if | have an umbrella at home,

then | should take an umbrella with me

Parsing Conditional Statements

if it is raining,
then (if | am going out,
then if | have an umbrella at home,

then | should take an umbrella with me)

Parsing Conditional Statements

if it is raining,
then (if | am going out,
then (if | have an umbrella at home,

then | should take an umbrella with me))

Parsing Conditional Statements

if it is raining,
A

then (if | am going out,
B
then (if | have an umbrella at home,
C

then | should take an umbrella with me;))
D

Parsing Conditional Statements

if it is raining,
A

then (if | am going out,
B
then (if | have an umbrella at home,
C

then | should take an umbrella with me;))
D

We write this as: A—-B—-C—D for A— (B—(C—D))

The Walnut Example

Let:

A be the type of walnuts
B be the type of food

C be the type of coins

A walnut vending machine has type C — A
A nutcracker vending machine has type C - A — B
A coin has type C

The scenario that we described has type:

(C>A)»(C>A—->B)—-C—B

Propositions in Minimal Logic

A proposition is either a logical atom or an arrow:

logical atom X

proposition

T

A|B|C]|.

X
T—T

logical atom
arrow

Propositions in Minimal Logic

A proposition is either a logical atom or an arrow:

logical atom X = A|B|C]|..
proposition " = X logical atom
| T—>T arrow

For example, we have:
A— ((B—(C—A)) —B)
which we can more succinctly write as:

A—-B—-C—A)—B

Contexts and Judgments in Minimal Logic

Contexts are a list of propositions that we take as given
For example, we could assume (A, A — B)

We typically denote variable contexts as I

Contexts and Judgments in Minimal Logic

Contexts are a list of propositions that we take as given
For example, we could assume (A, A — B)

We typically denote variable contexts as I

From a context and a proposition, we can form the judgment ' - T
This called a sequent and is read as: [' proves I’
We also consider the judgment 7€ I

This is read as: 1" is an assumption in I’

Contexts and Judgments in Minimal Logic [cont.]

context r = () empty
| (', T) extension

judgement J = T €l lookup
| I'ET sequent

For example, we can form judgments like:

AFA

A,A—BFB
() FA—-(A—>B)—B
()FA

Reasonability

The judgment:
()FA—-(A—B)—B

Is more reasonable than the judgment:
()FA

Since we know nothing about the atom A, so it should not follow from nothing

Reasonability

The judgment:
()FA—-(A—B)—B

Is more reasonable than the judgment:
()FA

Since we know nothing about the atom A, so it should not follow from nothing
How do we distinguish which statements are reasonable?

We will discuss two such notions: truth and proof

Truth

We will discuss a notion of truth known as the Boolean interpretation
This was originally introduced by Wittgenstein in the Tractatus

This notion of truth has to do with a semantics of possible states of affairs

Truth

We will discuss a notion of truth known as the Boolean interpretation
This was originally introduced by Wittgenstein in the Tractatus

This notion of truth has to do with a semantics of possible states of affairs

Denote the truth values by T (true) and L (false)
Any atom A can either be T or |, and we have to account for all possibilities

For example, in A — A, if A is true, then we get T — T, which is true, and if A
is false, we get | — |, which is also true, so A — A is true independent of the
state of affairs

Truth [cont.]

For atoms, we don't know their truth values, so we consider all possibilities
A valuation is a function v : Atom — {T, L}
Any valuation v : Atom — {T, L} can be extended to (—), : Prop — {T, L}
This is defined by:
(X), =vX)
(T—=>W),=(T), = (W),

Where — on truth values is defined by the table:

w
T—-W|T L

Truth [cont.]

Given a context I', a valuation v : Atom — {T, L} is said to be admissible if for
every I'e I', we have (7'), =T

Given a sequent [' = T, the sequent is said to be true if for every admissible
valuation v, we have (7)), = T

We only care about the values of on atoms that actually appear in the sequent

Truth [cont.]

For example, consider:
()FA

Let © be defined by v(A) = L, then v is vacuously admissible in the empty
context and (A), = L

This judgment is therefore not true, as we have constructed a countermodel

On the other hand, if v is admissible in the context (A), then v(A) = T

Therefore the following judgment is true:

AFA

Truth [cont.]

For one last example, consider:
()FA—>(A—B)—B

Considering all four valuations defined on A and B, we get:

A B (A—->(A—B)—B),

T T T=>(T=>T)=T=T=(T>T)=T->T=T
T 1L T((T->L)-1)=T>(L->L)=T>T=T
L TlLl>(L=>T)=T=lL=>(T>T)=L->T=T
L lllos(Llo>o)=1(ToL=1L—>1=T

Since all valuations result in T on the formula, the judgment is true

Proof

Truth requires looking at an exponential number of valuations in terms of the
number of atoms in the sequent

Is there a more efficient way to establish the validity of a sequent?

Yes, via proof!

Proof

Truth requires looking at an exponential number of valuations in terms of the
number of atoms in the sequent

Is there a more efficient way to establish the validity of a sequent?

Yes, via proof!

We introduce proof rules:

Tel
—— 7V = AV
Te([,T) TeT,w)
Tel r,7+w r-r—w r-mr

\% —_— —E
r=r '-T—w r-w

Proof [cont.]

We are then able to chain proof rules together to form proof trees

For example:

VAY)

A€ (A)
zv Sv
A—>Be(A,A—B) Aec(A,A—B)
Var Var

A,A—>BFA—>B A,A—=BFA
%
A,A—BFB .

I

A+ (A—B)—B

FA—(A—-B)—B

BHK Interpretation

What does a proof of T'— W mean?

From a constructive perspective, treat propositions as mathematical objects
naively thought of as the set of their proofs

Write [' ¢ : T for ‘I" proves 1" with proof ¢’

A proof of I"— W is a construction that takes a proof of 7"and produces a proof
of W, thus think of 7"— W as the function space between proofs of 7"and W/

Given a formula with a last free variable ', = : 7' ¢ : 11/, we can abstract over
the variable to form a function ' =\ (z: 7). ¢t:T— W

Given a proof of ' = f: T"— W and a proof ' =t : T, we can apply the function
to form a proof I' = f¢: W

Proof Terms

We define a language of functions:

type 1T = X base
| T—>T arrow

term t = =« variable
| A (z:T).t abstraction
| tt application

Sample proof terms are:

>
—
=
>
S

A (a:A):)\ (f:A—=B). fa

Proof Terms [cont.]

Applications are left associative and the scope of abstractions extend maximally
to their right

Thus the term:
A(f:A=B—=>C).A(a:A). A (b:B). fabd
Denotes the fully parenthesised expression:

A(f:A=>B—=0). A(a:A). A (b:B). ((fa) b))

Simply Typed Lambda Calculus

We adjust the judgments and proof rules from before to account for terms
Contexts ' now become lists of variable bindings, such as (¢ : A, f: A — B)
Variable lookups assert that a certain binding is in the context (z: 7) € I’
Sequents take the form I' ¢ : T, and are read as ‘I" proves 7" with proof ¢’

context r = () empty

| (I',xz:T) extension
Jjudgement J = (x:T1)€l lookup

| I'Ft:T7 sequent

Simply Typed Lambda Calculus [cont.]

The old proof rules for minimal logic were:

Ter, T, T-W TET—W TFT
—
TET o TET— W T W

—E

The new proof rules for simply typed lambda calculus are:

(:U:T)EFV Fe:THt: W N
——————Vvar
Tkax:T TEX (z:T).t:T—W

F'Et:T—W 'ks:T
I'Ets: W

—E

Simply Typed Lambda Calculus [cont.]

Our proof tree from before becomes:

\VETS

A [ASBFI ASB™ GiA T ASBRaA
@:A,f:A>BF fa:B
G:AFA(f:A=B).fa:(A—B)—B
FX(@:A). A (f:A=B). fa:A—>(A—B)—B

|

=

Note that at each step, the syntactic category in the conclusion of the rule tells
us which rule was applied

The proof tree can thus be recovered uniquely from a well-typed term

X (a:A). A (f:A—=B).fa:A— (A—B)—>B

Walnut Example

Let:

A be the type of walnuts
B be the type of food

C be the type of coins

Goal:
(C>A)»(C>A—->B)—-C—B

Proof:
A (v, :Co>A). X (v,,:Co>A>B). A (c:C). (v,.¢) (v,)
Omitting type annotations:

AUy AUpe A (v,) (v, €)

w*

Computation

Functions defined by formulas are dynamic objects, and evaluating a formula on
an input should result in computation

This leads to the 8 and n laws:

Doa:ThisW Ths:T THt:T—W
7
TFOat) s=t[zs: W Tri=iztz: T W'

For example, six applications of the 3 law yield the following definitional equality:

An. Am. Az As.n (mzs)s) (Az.As.s (s2) (Az.As.s (s2)
=Az.As.5 (s (s (s2)

This is known as the computation that 2 + 2 = 4 in Church arithmetic

Categories

Categories

A category € consists of a collection of object ob. and, for every two objects
A B : obg, a collection of morphisms more(A, B)

This is equipped with a composition operation
— 0 — mOI’C<B, C) X mOI’C(A, B) % mOI’C<A, C)

That is associative and has units 1 , : mor, (A, A) satisfying the left and right
identity laws

We write f: A — B for f: morp(A, B)

Terminal Objects and Products

A category € has a terminal object 1 : obp if for every object I' : ob, there is a
unique morphism ! : ' — 1

Terminal Objects and Products

A category € has a terminal object 1 : obp if for every object I' : ob, there is a
unique morphism ! : ' — 1

A category € has products if for every I', 1": ob there is an object I' x 7": obpe
along with projections 7w : I' x T'— I, z: ' x I"— T"such that for any A : obe
along with f: A - T"and g: A — T, thereis a unique ([, g): A —TxT

satisfying mo (f,g)=fand zo (f,g) =g

Cartesian Closed Categories

A category with products € is cartesian closed if for every T, W : obp, there is a
natural family of bijections mor, (I' x T, W) = mor, (I', T=) for some
representing object 7'= W : obe

Cartesian Closed Categories

A category with products € is cartesian closed if for every T, W : obp, there is a

natural family of bijections mor, (I' x T, W) = mor, (I', T=) for some
representing object 7'= W : obe

This means that there is A : more (I' X T, W) — more (I', T= W) and
App : morp (I'; T= W) — morp (I' x T, W) that are mutually inverse, and
naturality of App in [' means that for f: ' = 7T'= W and g: A — I', then
App(fog) = (App fle(gem,z)

Cartesian Closed Categories

A category with products € is cartesian closed if for every T, W : obp, there is a
natural family of bijections mor, (I' x T, W) = mor, (I', T=) for some
representing object 7'= W : obe

This means that there is A : more (I' X T, W) — more (I', T= W) and
App : morp (I'; T= W) — morp (I' x T, W) that are mutually inverse, and
naturality of App in [' means that for f: ' = 7T'= W and g: A — I', then

App (feog) = (App fle(gem, z)

From this we can define:

app : more (I', T= W) — more (I', T) — more (I', W)

app fg=(App f)e(1r,9)

£ and 1 laws in CCCs

yz:THt: W '-s:T
F'EAx.t) s=t [z s]: W

First, fort : I'xT'— W and s : ' — T we have:

app (A1) s
= (App (At))o(1p,s)
Lo <1F7 >

B and n laws in CCCs [cont.|

I'Ft:T— W
FI—tEAm.tm:T%Wn
Next, for f: ' — T'= W, we have:

(app (feom) 2)

((App (fem))o(1lpyp,2))

((App f)o(mem,z)e(lp,r,2))

((App flo(mome(lp,p,2),20(lpyr,2)))
((App f)e(m, 2))
(
(

1l
—

(App f) o1y T)

o= = =

Interpreting STLC

Suppose we consider STLC with only one logical atom A

Refer to the set of types as Ty, the set of contexts as Ctx, the set of variables of
type 7"in context [' as Var I' 7} and the set of terms of type 7"in context " as
TmID T

Now suppose that ¢ is a cartesian closed category and that we choose an object
Base : obe

We now define a collection of interpretations using Agda-esque pattern matching
notation

Interpreting STLC [cont.]

TYPES:
[-1: Ty — obe
[A] = Base
[T>W]=[T]=[W]
CONTEXTS:

[-] : Ctx — obe
[OT=1
[@T,z:D) =T x[T]

Interpreting STLC [cont.]

VARIABLES:

TERMS:

[-]:VarT' T s moro ([T, [T])
[zv] ==

[svo]=[v]enm

[-]: TmTT—moro ([T], [T])
[varv]=[v]
[Ax.t]=A[t]
[ts]=app[t][s]

Summary

The categorical logic of STLC is a generalisation of the Boolean semantics

The latter is a special case of the full subcategory of Set on the objects | = {}
T={x}

Summary

The categorical logic of STLC is a generalisation of the Boolean semantics

The latter is a special case of the full subcategory of Set on the objects | = {}
T={x}

STLC is not complete with respect to Boolean semantics

This is because Peirce's law ((A — B) — A) — A is true but not provable as it is
equivalent to LEM

But STLC is complete with respect to its categorical logic

Thank you for listening to my talk!

