Math 321: More with functions: equinumerosity

Kameryn J Williams

University of Hawai'i at Mānoa

Fall 2020

K Williams (U. Hawai'i @ Mānoa)

Math 321: Equinumerosity

臣 Fall 2020 1 / 12

(日) (同) (三) (三)

DQC

Recall that a function $f : A \rightarrow B$ is a bijection onto B if f is both one-to-one and onto B. That is, f satisfies the following property:

• For all $b \in B$ there is a unique $a \in A$ so that f(a) = b.

(日) (同) (三) (三)

Recall that a function $f : A \rightarrow B$ is a bijection onto B if f is both one-to-one and onto B. That is, f satisfies the following property:

• For all $b \in B$ there is a unique $a \in A$ so that f(a) = b.

Today we're going to discuss a use of bijections to talk about sets.

イロト イポト イヨト トヨト 三日

Comparing discrete collections

Suppose you have two discrete collections A and B of objects. How do you determine whether your two collections have the same size?

Image: A math a math

Definition

Two sets A and B are equinumerous, let's denote this as $A \sim B$, if there is a bijection $f : A \rightarrow B$.

This definition is meant to capture the idea that A and B have the same number of elements.

• □ ▶ • • □ ▶ • • □ ▶ •

 \sim is an equivalence relation on sets.

• □ ▶ • • □ ▶ • • □ ▶ •

 \sim is an equivalence relation on sets.

Proof.

We need to check three things. (\sim is reflexive)

(\sim is symmetric)

(\sim is transitive)

K Williams (U. Hawai'i @ Mānoa)

Image: Image:

DQC

 \sim is an equivalence relation on sets.

Proof.

We need to check three things. (\sim is reflexive) For any set A, the identity function $id_A : A \rightarrow A$ is a bijection from A onto A. (\sim is symmetric)

 $(\sim \text{ is transitive})$

K Williams (U. Hawai'i @ Mānoa)

A = A = A

 \sim is an equivalence relation on sets.

Proof.

We need to check three things. (~ is reflexive) For any set A, the identity function $id_A : A \to A$ is a bijection from A onto A. (~ is symmetric) If $f : A \to B$ is a bijection from A onto B then $f^{-1} : B \to A$ is a bijection from B onto A. (~ is transitive)

K Williams (U. Hawai'i @ Mānoa)

・ロト ・ 同ト ・ ヨト ・ ヨト

 \sim is an equivalence relation on sets.

Proof.

We need to check three things. (~ is reflexive) For any set A, the identity function $id_A : A \to A$ is a bijection from A onto A. (~ is symmetric) If $f : A \to B$ is a bijection from A onto B then $f^{-1} : B \to A$ is a bijection from B onto A. (~ is transitive) Suppose $f : A \to B$ and $g : B \to C$ are bijections. Then $g \circ f : A \to C$ is a bijection.

A reasonable question one might have at this point:

• Why are we doing all this work? This seems a lot more complicated than just counting things, so what's the point?

A reasonable question one might have at this point:

• Why are we doing all this work? This seems a lot more complicated than just counting things, so what's the point?

The answer is that these ideas let us get a handle on infinite sets. With finite sets, things are more straightforward, but it's not so clear what to do with infinite sets like \mathbb{N} or \mathbb{Q} or \mathbb{R} . This extra abstraction lets us talk about a more general context.

イロト イポト イヨト イヨト 二日

Finite and infinite sets

Definition

A set A is finite if there is some $n \in \mathbb{N}$ so that

$$A \sim \{k \in \mathbb{N} : k < n\} = \{0, 1, \dots, n-1\}.$$

If A is not finite then we call it infinite.

(日) (同) (三) (三)

Informally, the cardinality of a set is the number of elements in the set. Formally, we define this using equivalence classes.

Definition

Given a set *A*, the cardinality of *A*, denoted |A|, is the equivalence class $[A]_{\sim}$ with respect to the equinumerosity relation. So given sets *A* and *B*, we have |A| = |B| iff $A \sim B$. Informally, the cardinality of a set is the number of elements in the set. Formally, we define this using equivalence classes.

Definition

Given a set *A*, the cardinality of *A*, denoted |A|, is the equivalence class $[A]_{\sim}$ with respect to the equinumerosity relation. So given sets *A* and *B*, we have |A| = |B| iff $A \sim B$.

For finite sets, we use the familiar names for natural numbers for their cardinalities. That is, we will simply write |A| = n to mean $A \sim \{k \in \mathbb{N} : k < n\}$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Some infinite sets with cardinality $|\mathbb{N}|$

K Williams (U. Hawai'i @ Mānoa)

- 2 Fall 2020 9 / 12

Do all infinite sets have the same cardinality?

<ロト <四ト < 回ト < 回

Do all infinite sets have the same cardinality?

To be continued in the next lecture...

K Williams (U. Hawai'i @ Mānoa)

Math 321: Equinumerosity

◆ ■ シ ■ シ へ ペ
Fall 2020 10 / 12

Comparing cardinalities

We know what it means to say |A| = |B|.

• This means $A \sim B$, which means there is a bijection $f : A \rightarrow B$.

Comparing cardinalities

We know what it means to say |A| = |B|.

• This means $A \sim B$, which means there is a bijection $f : A \rightarrow B$. Can we define what it means to say $|A| \leq |B|$?

Comparing cardinalities

We know what it means to say |A| = |B|.

• This means $A \sim B$, which means there is a bijection $f : A \rightarrow B$.

Can we define what it means to say $|A| \leq |B|$?

- Say $|A| \leq |B|$ if there is a one-to-one function $f : A \rightarrow B$.
- Say |A| < |B| if $|A| \le |B|$ and $|A| \ne |B|$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

The pigeonhole principle

Fact (The pigeonhole principle)

If |A| < |B| then no function $f : B \rightarrow A$ can be one-to-one.

If you have more pigeons than holes, then at least one pigeonhole must contain multiple pigeons.