Math 321: More with functions: equinumerosity

Kameryn J Williams
University of Hawai'i at Mānoa

Fall 2020

Bijections

Recall that a function $f: A \rightarrow B$ is a bijection onto B if f is both one-to-one and onto B. That is, f satisfies the following property:

- For all $b \in B$ there is a unique $a \in A$ so that $f(a)=b$.

Bijections

Recall that a function $f: A \rightarrow B$ is a bijection onto B if f is both one-to-one and onto B. That is, f satisfies the following property:

- For all $b \in B$ there is a unique $a \in A$ so that $f(a)=b$.

Today we're going to discuss a use of bijections to talk about sets.

Comparing discrete collections

Suppose you have two discrete collections A and B of objects. How do you determine whether your two collections have the same size?

Equinumerosity

Definition

Two sets A and B are equinumerous, let's denote this as $A \sim B$, if there is a bijection $f: A \rightarrow B$.

This definition is meant to capture the idea that A and B have the same number of elements.

Basic properties of equinumerosity

Proposition

\sim is an equivalence relation on sets.

Basic properties of equinumerosity

Proposition

\sim is an equivalence relation on sets.

Proof.

We need to check three things.
(\sim is reflexive)
(\sim is symmetric)
(\sim is transitive)

Basic properties of equinumerosity

Proposition

\sim is an equivalence relation on sets.

Proof.

We need to check three things.
(\sim is reflexive) For any set A, the identity function $\mathrm{id}_{A}: A \rightarrow A$ is a bijection from A onto A.
(\sim is symmetric)
(\sim is transitive)

Basic properties of equinumerosity

Proposition

\sim is an equivalence relation on sets.

Proof.

We need to check three things.
(\sim is reflexive) For any set A, the identity function $\mathrm{id}_{A}: A \rightarrow A$ is a bijection from A onto A.
(\sim is symmetric) If $f: A \rightarrow B$ is a bijection from A onto B then $f^{-1}: B \rightarrow A$ is a bijection from B onto A.
(\sim is transitive)

Basic properties of equinumerosity

Proposition

\sim is an equivalence relation on sets.

Proof.

We need to check three things.
(\sim is reflexive) For any set A, the identity function $\mathrm{id}_{A}: A \rightarrow A$ is a bijection from A onto A.
(\sim is symmetric) If $f: A \rightarrow B$ is a bijection from A onto B then $f^{-1}: B \rightarrow A$ is a bijection from B onto A.
(\sim is transitive) Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$ are bijections. Then $g \circ f: A \rightarrow C$ is a bijection.

What's the point???

A reasonable question one might have at this point:

- Why are we doing all this work? This seems a lot more complicated than just counting things, so what's the point?

What's the point???

A reasonable question one might have at this point:

- Why are we doing all this work? This seems a lot more complicated than just counting things, so what's the point?
The answer is that these ideas let us get a handle on infinite sets. With finite sets, things are more straightforward, but it's not so clear what to do with infinite sets like \mathbb{N} or \mathbb{Q} or \mathbb{R}. This extra abstraction lets us talk about a more general context.

Finite and infinite sets

Definition

A set A is finite if there is some $n \in \mathbb{N}$ so that

$$
A \sim\{k \in \mathbb{N}: k<n\}=\{0,1, \ldots, n-1\} .
$$

If A is not finite then we call it infinite.

Cardinality

Informally, the cardinality of a set is the number of elements in the set. Formally, we define this using equivalence classes.

Definition

Given a set A, the cardinality of A, denoted $|A|$, is the equivalence class $[A]_{\sim}$ with respect to the equinumerosity relation. So given sets A and B, we have $|A|=|B|$ iff $A \sim B$.

Cardinality

Informally, the cardinality of a set is the number of elements in the set. Formally, we define this using equivalence classes.

Definition

Given a set A, the cardinality of A, denoted $|A|$, is the equivalence class $[A]_{\sim}$ with respect to the equinumerosity relation. So given sets A and B, we have $|A|=|B|$ iff $A \sim B$.

For finite sets, we use the familiar names for natural numbers for their cardinalities. That is, we will simply write $|A|=n$ to mean $A \sim\{k \in \mathbb{N}: k<n\}$.

Some infinite sets with cardinality $|\mathbb{N}|$

A question

Do all infinite sets have the same cardinality?

A question

Do all infinite sets have the same cardinality?

To be continued in the next lecture...

Comparing cardinalities

We know what it means to say $|A|=|B|$.

- This means $A \sim B$, which means there is a bijection $f: A \rightarrow B$.

Comparing cardinalities

We know what it means to say $|A|=|B|$.

- This means $A \sim B$, which means there is a bijection $f: A \rightarrow B$.

Can we define what it means to say $|A| \leq|B|$?

Comparing cardinalities

We know what it means to say $|A|=|B|$.

- This means $A \sim B$, which means there is a bijection $f: A \rightarrow B$.

Can we define what it means to say $|A| \leq|B|$?

- Say $|A| \leq|B|$ if there is a one-to-one function $f: A \rightarrow B$.
- Say $|A|<|B|$ if $|A| \leq|B|$ and $|A| \neq|B|$.

The pigeonhole principle

Fact (The pigeonhole principle)

If $|A|<|B|$ then no function $f: B \rightarrow A$ can be one-to-one.
If you have more pigeons than holes, then at least one pigeonhole must contain multiple pigeons.

