MATH 321: HOMEWORK 6 DUE FRIDAY, MAR 5 BY 11:00PM

This homework is about *Khayyam's triangle*, named after the eleventh century Persian mathematician Omar Khayyam.¹ You may have seen it before, but let me give the definition in case you have not. This triangle of numbers is connected to the *binomial coefficients* $\binom{n}{k}$, as you will prove in this homework. It is constructed row by row, in a recursive procedure starting at row 0, which contains just one number, namely 1. Thereon, row *n* has n + 1 many numbers: the two on the outside are 1s, and the interior numbers are the sum of the two numbers above:

FIGURE 1. The first several rows of Khayyam's triangle.

Let me also remind you that $\binom{n}{k}$ is, by definition, the number of way to pick k objects from n choices, where you don't care about the order (we assume $0 \le k \le n$). The formula to directly compute $\binom{n}{k}$ is

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

(If you are using LATEX, the command for binomial coefficients is \binom{n}{k}. Make sure you have \usepackage{amsmath} in the preamble to your file, as that is the package which defines that command.)

¹The triangle was earlier studied by the mathematician Al-Karaji, and it was independently discovered elsewhere, e.g. in China and Europe. Europeans usually call it *Pascal's triangle*, after Blaise Pascal.

Problem 1. Prove by induction on *n* that the *k*th number in the *n*th row of Khayyam's triangle is $\binom{n}{k}$, where each row is indexed starting at $0.^2$ [Hint: You need to show two things, since the rules for exterior versus interior positions are different: (*a*) that the exterior positions are $\binom{n}{0} = \binom{n}{n} = 1$, which include the base case $\binom{0}{0} = 1$, and for the inductive step to get the interior positions, (*b*) that $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$.]

Problem 2. Use the result of the previous problem to prove by induction that the following sum holds for all natural numbers n:

$$\sum_{k=0}^{n} \binom{n}{k} = \binom{n}{0} + \dots + \binom{n}{n} = 2^{n}.$$

Problem 3. Prove by induction on $n \ge 1$ that $\binom{n+1}{2} = \sum_{i=1}^{n} i = 1 + 2 + \dots + n$.

Problem 4. Prove that if p is prime, then every number in the pth row of Khayyam's triangle is either 1 or a multiple of p.

 $^{^{2}}$ For example, in row 3 the 0th number is 1, the 1st number is 3, the 2nd number is 3, and the 3rd number is 1.