MATH 1420: WORKSHEET FOR SECTION 5.4 THE SUBSTITUTION RULE

The substitution rule, also called change of variables, is the backward version of the chain rule.

$$
\int f^{\prime}(u(x)) \cdot \underbrace{u^{\prime}(x) \mathrm{d} x}_{=\mathrm{d} u}=f(u(x))+C
$$

When applying it, what you need to do is figure out what $u=u(x)$ needs to be to recognize the pattern. Once you decide on u, then you need to calculate $\mathrm{d} u=u^{\prime} \mathrm{d} x$.

Here's an example:

$$
\int \frac{e^{x}}{\sqrt{e^{x}+4}} \mathrm{~d} x
$$

$e^{x}+4$ is the input to the square root, let's try that. If $u=e^{x}+4$, then $\mathrm{d} u=e^{x} \mathrm{~d} x$. The integral becomes

$$
\int \frac{1}{\sqrt{u}} \mathrm{~d} u=\int u^{-1 / 2} \mathrm{~d} u
$$

You can find the antiderivative by using the power rule, then substitute back in for x :

$$
2 u^{1 / 2}+C=2 \sqrt{e^{x}+4}+C
$$

You can check your work by differentiating your answer and seeing that you get back the original integrand.
If you are calculating a definite integral using substitution, you need to make sure you use the right limits of integration. Either you need to translate back to the x-domain to use the limits for x, or you need to transform the limits for x into limits in the u-domain, by plugging in the limits for x to $u(x)$.

Let's see an example, using both methods.

$$
\int_{0}^{1} 2 x \sqrt{x^{2}+1} \mathrm{~d} x
$$

We pick $u=x^{2}+1$ and so $\mathrm{d} u=2 x \mathrm{~d} x$. First let's solve this keeping the limits in the x-domain:

$$
\begin{aligned}
\int_{x=0}^{x=1} \sqrt{u} \mathrm{~d} u & =\left.\frac{3 \sqrt{u^{3}}}{2}\right|_{x=0} ^{x=1} \\
& =\left.\frac{3 \sqrt{\left(x^{2}+1\right)^{3}}}{2}\right|_{x=0} ^{x=1} \\
& =\frac{3 \sqrt{8}}{2}-\frac{3 \sqrt{1}}{2} \\
& =3 \sqrt{2}-\frac{3}{2}
\end{aligned}
$$

If we instead want to solve this by using limits in the u-domain, we need to calculate what those limits are: $u(0)=1$ will be the lower limit and $u(1)=2$ will be the upper limit.

$$
\begin{aligned}
\int_{1}^{2} \sqrt{u} \mathrm{~d} u & =\left.\frac{3 \sqrt{u^{3}}}{2}\right|_{u=1} ^{u=2} \\
& =\frac{3 \sqrt{8}}{2}-\frac{3 \sqrt{1}}{2} \\
& =3 \sqrt{2}-\frac{3}{2}
\end{aligned}
$$

Each of the following functions came from the chain rule and is of the form $f^{\prime}(u(x)) \cdot u^{\prime}(x)$. Decide what $u(x)$ must be to recognize the function is in that form. Once you think you know what $u(x)$ should be, identify which part of the function is $f^{\prime}(u(x))$ and which part is $u^{\prime}(x)$.
(1) $3 e^{6 x}$
(2) $4 x \sin \left(x^{2}\right)$
(3) $\frac{\cos x}{\sin x}$
(4) $\sin (\sin (x)) \cos x$

Use substitution to find each of the following indefinite integrals.
(1) $\int 3 e^{6 x} \mathrm{~d} x$
(2) $\int \frac{\cos x}{\sin x} \mathrm{~d} x$
(3) $\int-\left(x^{2}+2 x\right)^{5}(x+1) \mathrm{d} x$
(4) $\int t^{2} \sec ^{2}\left(t^{3}\right) \mathrm{d} t$
(5) $\int \frac{2 t}{\left(t^{2}+4\right)^{3}} \mathrm{~d} t$
(6) $\int e^{x}+\sin x e^{\cos x} \mathrm{~d} x$ [Hint: break the integral up along the sum.]

Find each of the following definite integrals. Make sure to use the correct limits of integration!
(1) $\int_{0}^{\ln 2} 2 e^{2 x} \mathrm{~d} x$
(2) $\int_{-1}^{1} 5 x^{4}\left(x^{5}-1\right)^{3} \mathrm{~d} x$
(3) $\int_{0}^{2} 4 t \sqrt{4-t^{2}} \mathrm{~d} t$
(4) $\int_{\pi / 2}^{\pi} \sin t e^{\cos t} \mathrm{~d} t$

