Math 1420: Study Guide for Final Exam

General comments:

- The format for the final exam is similar to the midterms, except it's a little longer. On the other hand, you have 120 minutes rather than 75 minutes.
- Calculators and other electronic devices are not allowed for the exam.
- You may bring a single 3 by 5 index card with formulas, notes, or whatever else you want on it. Write your name on it, and turn it in to me with your exam.
- The exam is about $1 / 4$ to $1 / 3$ new material, with the remainder cumulative over the material from the three midterms.
- Show your work! For one, understanding the process and how to communicate your logic to others is more important than being able to produce a correct answer with no explanation. For another, I cannot give partial credit if you show no work.

Here's what you should know for the new material since the last midterm.

1. Conceptual Understanding

- The meaning of definite integral, and its connection to area.

2. Formal Understanding

- How the fundamental theorem of calculus gives a connection between integrals and derivatives. How to use it to determine the derivative of a function defined by integration.

3. Rules for Calculations

- How to use the substitution rule to compute indefinite and definite integrals.

4. Approximations and Applications

- How to set up a Riemann sum. How to calculate a left or right Riemann sum (with small N, about $N=4$).

For the cumulative material, you should know everything from the previous study guides. Let me highlight some especially important material.

1. Conceptual Understanding

- The geometric meaning of the derivative, and its connection to slope.
- How to determine limits given the graph of a function.

2. Formal Understanding

- How to find maximums and minimums, as well as critical points. How to determine where a function is increasing, decreasing, concave up, concave down.

3. Rules for Calculations

- How to calculate antiderivatives of basic functions.
- How to calculate derivatives.
- L'Hôpital's rule for calculating limits with $0 / 0$ and ∞ / ∞ indeterminate form.

4. Approximations and Applications

- How to solve optimization problems

Here are some sample questions similar to what you should expect to see on the exam.

1. Use the graph of the function $f(x)$ below to determine the limits

$$
\begin{array}{ccc}
\lim _{x \rightarrow-\infty} f(x), & \lim _{x \rightarrow 0} f(x), & \lim _{x \rightarrow 2} f(x), \\
\lim _{x \rightarrow 4^{-}} f(x), & \lim _{x \rightarrow 4^{+}} f(x), & \lim _{x \rightarrow 4} f(x), \\
\lim _{x \rightarrow 6^{-}} f(x), & \lim _{x \rightarrow 6^{+}} f(x), & \lim _{x \rightarrow 6} f(x)
\end{array}
$$

2. Consider the function

$$
f(x)=\frac{2 x(x+1)}{(x+1)(x-2)^{2}} .
$$

Calculate the limits

$$
\lim _{x \rightarrow-\infty} f(x), \quad \lim _{x \rightarrow-1} f(x), \quad \lim _{x \rightarrow 0} f(x), \quad \lim _{x \rightarrow 2} f(x), \quad \lim _{x \rightarrow \infty} f(x)
$$

3. Calculate the limit

$$
\lim _{x \rightarrow 2} \frac{x-2}{\sqrt{x-1}-1}
$$

4. Use the squeeze theorem to compute the limit

$$
\lim _{x \rightarrow 0} x^{2} \sin (1 / x)
$$

5. The function $g(x)$ is given by the following graph, with the tangent line at $x=2$ drawn in. Use this information to determine $g(2)$ and $g^{\prime}(2)$.

6. Calculate the integral $\int_{-2}^{2} \sqrt{4-x^{2}} \mathrm{~d} x$. [Hint: draw a picture, use a geometry formula!]
7. Your car starts at rest and over the course of 2 minutes you accelerate to a speed of 60 miles per hour. Was there a time during those 2 minutes where your speed was exactly equal to your average speed over thoes 2 minutes? Justify your answer with a short explanation.
8. Use the graph below of the function $f(x)$ to list all the values of x where $f(x)$ has a discontinuity. For each, state what kind of discontinuity (removable, jump, or infinite) it is.

9. Consider the piecewise-defined function

$$
f(x)=\left\{\begin{array}{cc}
x^{2}+4 x & \text { if } x<0 \\
2^{x}-1 & \text { if } 0<x<4 \\
30-x^{2} & \text { if } 4<x
\end{array}\right.
$$

This function is undefined and thus discontinuous at $x=0$ and $x=4$. For each discontinuity, determine whether it is a removable discontinuity or a jump discontinuity. Justify your answers with limit calculations.
10. You know that $f(x)$ is continuous on the interval $[-3,3]$, that $f(-3)=-10$, and $f(3)=1$. Can you conclude that $f(x)$ has a zero? Justify your answer with a sentence.
11. The function $F(x)$ is defined as $F(x)=\int_{x}^{420} \cos \left(e^{t}\right) \mathrm{d} t$. Determine $F^{\prime}(x)$.
12. The function $G(x)$ is defined as $G(x)=\int_{x}^{e^{x}} \ln (t) \mathrm{d} t$. Determine $G^{\prime}(x)$.
13. Consider the function $h(x)=x^{3}-3 x^{2}+36 x-100$. Find the location of all local maximums and minimums of $h(x)$.
14. For this same function $h(x)$, where is it increasing? Where is it decreasing? Give your answer in interval notation.
15. For this same $h(x)$, determine where it is concave up, and where it is concave down. Where are its inflection points?
16. Use the definition of the derivative to calculate $f^{\prime}(x)$ if $f(x)=x^{3}+3$.
17. Use implicit differentiation to find the derivative of $q(x)=(\sqrt{x})^{x}$.
18. Calculate the indefinite integral

$$
\int 2 x e^{\sin x+x^{2}}+\cos x e^{\sin x+x^{2}} \mathrm{~d} x .
$$

19. Calculate the definite integral

$$
\int_{0}^{2} \frac{2 x}{x^{2}+1} \mathrm{~d} x
$$

20. Calculate the indefinite integral

$$
\int e^{t}-4 t^{2}+\cos t \mathrm{~d} t
$$

21. Calculate the definite integral

$$
\int_{-1}^{1} 4 x^{3}-6 x+1 \mathrm{~d} x
$$

22. Calculate the derivative of

$$
a(x)=x^{40}-10 x^{11}+x^{2}+130 .
$$

23. Calculate the derivative of

$$
b(x)=e^{x^{2}}
$$

24. Calculate the derivative of

$$
c(x)=\frac{\ln x}{x^{2}}
$$

25. Calculate the derivative of

$$
d(x)=\tan (4 x)-\arctan (2 x)
$$

26. Use L'Hôpital's rule to compute the limit

$$
\lim _{x \rightarrow 0} \frac{\cos x-1}{x} .
$$

27. Use L'Hôpital's rule to compute the limit

$$
\lim _{x \rightarrow \infty} \frac{e^{x / 100}}{50 x^{2}}
$$

28. Consider the function $q(x)=x^{2}+4 x$. Write the right Riemann sum to approximate the area under this curve on the interval $[0,100]$, with $N=1000$ regions. Substitute in the definitions of the various pieces so that your summand depends only on the index variable i for the sum.
29. For the same $q(x)$, compute the left Riemann sum to approximate the integral

$$
\int_{0}^{6} q(x) \mathrm{d} x
$$

using $N=3$ regions.
30. Find the point on the line $y=x+1$ which minimizes the distance to the point $(1,4)$.
31. Find the two numbers x, y both between 0 and 10 which minimizes the value $x^{3}+y^{2}$ given the constraint $x+y=10$.
32. A perfectly spherical balloon is being inflated at a rate of $2 \mathrm{~m}^{3}$ per second. What is the rate of change of the radius of the balloon at the moment when the radius is 10 m ?
33. Find the slope of the curve $e^{x y}+x y+x=1$ at the point $(0,2)$.

