MATH 1420: WORKSHEET FOR SECTION 3.2

There are two types of rules for derivatives: rules that tell you how to differentiate a basic function, and rules that tell you what to do when a function is built up from simpler functions. Here's some rules to get us started.

Rules for basic functions

Constant Rule. Whenever c is a constant,

$$
\frac{\mathrm{d}}{\mathrm{~d} x} c=0 .
$$

Power Rule. When n is a positive integer

$$
\frac{\mathrm{d}}{\mathrm{~d} x} x^{n}=n x^{n-1}
$$

Extended Power Rule. More generally this works for any (nonzero) power:

$$
\frac{\mathrm{d}}{\mathrm{~d} x} x^{\alpha}=\alpha x^{\alpha-1}
$$

Rules for building up from simpler functions
Multiplication by a constant.

$$
\frac{\mathrm{d}}{\mathrm{~d} x} c f(x)=c \frac{\mathrm{~d}}{\mathrm{~d} x} f(x)=c f^{\prime}(x)
$$

Adding functions.

$$
\frac{\mathrm{d}}{\mathrm{~d} x}(f(x)+g(x))=\frac{\mathrm{d}}{\mathrm{~d} x} f(x)+\frac{\mathrm{d}}{\mathrm{~d} x} g(x)=f^{\prime}(x)+g^{\prime}(x) .
$$

Product rule.

$$
\frac{\mathrm{d}}{\mathrm{~d} x} f(x) g(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

Quotient rule.

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \frac{f(x)}{g(x)}=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g(x)^{2}}
$$

Using these rules, you can compute the derivative of any polynomial or any rational function. Here's some functions to differentiate.
(1) $a(x)=x^{2}=x \cdot x$. Try this with both the power rule and the product rule.
(2) $b(x)=4 x^{5}-3 x^{2}+2 x+3$.
(3) $c(x)=\frac{1}{x}$.
(4) $d(x)=\frac{1}{x^{3}}$. Try this with both the extended power rule and the quotient rule.
(5) $e(x)=\frac{(x-1)(x+1)}{x^{2}}$.
(6) $f(x)=1-\frac{1}{x^{2}}$. (You should get a formula for $f^{\prime}(x)$ equivalent to what you got for $e^{\prime}(x)$. Why?)
(7) $g(x)=3 x^{2}+\frac{2 x-1}{x+2}$.

