MATH 1420: WORKSHEET FOR SECTION 3.4

More rules for derivatives: Trig and exponentials
Trig functions.

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \sin x & =\cos x \\
\frac{\mathrm{~d}}{\mathrm{~d} x} \cos x & =-\sin x \\
\frac{\mathrm{~d}}{\mathrm{~d} x} \tan x & =\sec ^{2} x \\
\frac{\mathrm{~d}}{\mathrm{~d} x} \cot x & =-\csc ^{2} x \\
\frac{\mathrm{~d}}{\mathrm{~d} x} \sec x & =\tan x \sec x \\
\frac{\mathrm{~d}}{\mathrm{~d} x} \csc x & =-\cot x \csc x
\end{aligned}
$$

Exponential functions.

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} e^{x} & =e^{x} \\
\frac{\mathrm{~d}}{\mathrm{~d} x} b^{x} & =\ln (b) \cdot b^{x}, \quad \text { where } b \neq 1 \text { is positive }
\end{aligned}
$$

Here's some problems to practice differentiating with these rules.
(1) Differentiate $a(x)=2 \sin x-\cos x$. Then find $a^{\prime \prime}(x)$.
(2) Differentiate $b(x)=e^{x} \sin x$ using the product rule.
(3) If $c(x)=\cot x$, find $c^{\prime}(x)$ and $c^{\prime \prime}(x)$.
(4) Use the rules for differentiating sin and \cos and the quotient rule to work out the rules for differentiating the other four trig functions.
(5) Differentiate $d(x)=(\sin x+\cos x)(\sin x+\cos x)$.
(6) If $f(x)=20 \cdot 4^{x}$, determine $f^{\prime}(0)$.
(7) Find the second derivative of $\sin x$ and $\cos x$. Then find the third derivatives, then the fourth derivatives. What is the pattern if you keep differentiating?
(8) Find the first, second, third, and so on derivatives of e^{x}. Then do the same for b^{x} for b an arbitrary base. What is the general pattern?

