MATH 1420: WORKSHEET FOR SECTION 3.6

More rules for Derivatives: The chain rule

The chain rule, prime notation.

$$
\frac{\mathrm{d}}{\mathrm{~d} x} y(u(x))=y^{\prime}(u(x)) \cdot u^{\prime}(x)
$$

The chain rule, Leibniz notation.

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \cdot \frac{\mathrm{~d} u}{\mathrm{~d} x}
$$

A special case: horizontal transformations.

$$
\frac{\mathrm{d}}{\mathrm{~d} x} y(a x+b)=a y^{\prime}(a x+b), \quad a, b \text { are constants }
$$

The chain rule is used to differentiate a function that is given by composition. For example, consider the function $g(x)=\sqrt{x^{3}-x}$. You want to think of $g(x)$ as being given by composotion: $g(x)=y(u(x))$, where $y(u)=\sqrt{u}$ and $u(x)=x^{3}-x$. So the derivative will be

$$
g^{\prime}(x)=\frac{3 x^{2}-1}{2 \sqrt{x^{3}-x}},
$$

where the numerator is $u^{\prime}(x)$ and the denominator gives you $y^{\prime}(u(x))$.

Here's some problems to practice the chain rule.
(1) Find the derivative of $f(x)=e^{\ln (b) x}$, where $b \neq 1$ is a positive constant. Also find the derivative of $g(x)=b^{x}$. Compare your answers.
(2) Differentiate $a(x)=\sqrt{x^{3}+x+1}$
(3) Find the derivative of $\sin \left(\frac{180}{\pi} x\right)$ and $\cos \left(\frac{180}{\pi} x\right)$. What does this tell you about the calculus of trig functions when you use degrees instead of radians?
(4) Differentiate $b(x)=\cos ^{3}\left(2 x^{2}\right)$. (Hint: you need to use the chain rule twice!)
(5) Differentiate $c(x)=\frac{1}{x^{2}+2 x+1}$ by using the chain rule.
(6) Differentiate

$$
N(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} .
$$

Then differentiate

$$
N_{\mu, \sigma}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} /(2 \sigma)}, \quad \mu, \sigma \text { are constants. }
$$

(These functions are used in probability and statistics. $N_{\mu, \sigma}(x)$ is the probability distribution function for a normal random variable with mean μ and standard deviation σ.)
(7) The function $t(x)=\sqrt{r^{2}-x^{2}}$ gives the top half of a circle of radius r centered at the origin. Write an equation for the tangent line to the circle of radius r at the point with x-coordinate $r / 2$.

