MATH 1420: WORKSHEET FOR SECTION 4.3 EXTREME VALUES

Consider the function

$$
f(x)=-\frac{x^{3}}{3}+2 x^{2}+5 x+1
$$

(1) Use a graphing calculator or online tool like Desmos.com to graph $f(x)$ on the interval $[-6,6]$. Visually locate the critical points of $f(x)$ and determine where you think the absolute maximum and minimum are in this interval.
(2) Numerically determine the critical points of $f(x)$ in the interval $[-6,6]$ by calculating its derivative and finding where $f^{\prime}(x)=0$.
(3) Determine the absolute maximum and absolute minimum of $f(x)$ on the interval $[-6,6]$.
(4) If you were instead trying to find the absolute maximum and minimum of $f(x)$ on the interval $[0,6]$, what if anything would be different?
Find the absolute maximum and minimum of each function on the specified interval. If one or both doesn't exist, explain why.
(1) $g(t)=e^{-t^{2} / 2}$, on $[-1,2]$.
(2) $h(t)=\frac{t^{2}+1}{t+1}$, on $[0,3]$.
(3) $h(t)=\frac{t^{2}+1}{t+1}$, on $[-4,-1]$.
(4) $j(x)=\ln (\cos (x)+2)$, on $[0,2 \pi]$.

