Answers to In-Class Questions: March 23, 2023

Rolle's Theorem Checklist:

f is continuous on $[a, b]$
$\square f$ is differentiable on (a, b)
$f(a)=f(b)$

Mean Value Theorem Checklist:
f is continuous on $[a, b]$
f is differentiable on (a, b)

Recall that we say f is differentiable at $x=c$ if $f^{\prime}(c)$ exists as a real number.

1. Determine whether Rolle's Theorem applies to the given function on the specified interval $[a, b]$. If Rolle's Theorem applies, find all c in the open interval (a, b) which satisfies the conclusion of the theorem. If Rolle's Theorem does not apply, write "Rolle's Theorem does not apply". Provide justification for your conclusions.
(a) $x^{2}-3 x-16$ on $[-2,5]$

Answer: We go through our checklist:
∇f is a polynomial so it is continuous everywhere
$\checkmark f$ is a polynomial so it is differentiable everywhere
$\checkmark f(-2)=-6=f(5)$
Thus, Rolle's Theorem does apply. We now find all c in $(-2,5)$ such that $f^{\prime}(c)=0$.

$$
f^{\prime}(x)=2 x-3=0 \text { implies that } x=\frac{3}{2} . \text { Since } \frac{3}{2} \text { is indeed in }(-2,5),
$$

$$
c=\frac{3}{2} \text {. }
$$

(b) $2 x^{3}-9 x^{2}$ on $[-2,2]$

Answer: We go through our checklist:
∇f is a polynomial so it is continuous everywhere
$\checkmark f$ is a polynomial so it is differentiable everywhere
$\boxtimes f(-2)=-52 \neq-20=f(2)$
Thus, Rolle's Theorem does not apply.
(c) $3 x^{2}-2 x-1$ on $[-1,1]$

Answer: We go through our checklist:
$\square f$ is a polynomial so it is continuous everywhere
$\square f$ is a polynomial so it is differentiable everywhere
$\boxtimes f(-1)=4 \neq 0=f(1)$
Thus, Rolle's Theorem does not apply.
(d) $\frac{x^{2}}{x^{2}-16}$ on $[-5,5]$

Answer: We go through our checklist:
$\boxtimes f$ is not continuous on $[-5,5]$ as it has discontinuities at $x=-4,4$
$\boxtimes f$ is not differentiable on $(-5,5)$ as it is not differentiable at $x=-4,4$
$\nabla f(-5)=\frac{25}{9}=f(5)$
Thus, Rolle's Theorem does not apply.
(e) $\frac{x^{2}-2 x+1}{x^{2}-2 x-24}$ on $[0,2]$

Answer: Before we go through our checklist, consider that

$$
f(x)=\frac{x^{2}-2 x+1}{x^{2}-2 x-24}=\frac{(x-1)^{2}}{(x-6)(x+4)} .
$$

We go through our checklist:
$\checkmark f$ is continuous on $[0,2]$.
$\checkmark f$ is differentiable on $(0,2)$.
$\checkmark f(0)=-\frac{1}{24}=f(2)$.
Thus, Rolle's Theorem does apply. We now find all c in $(0,2)$ such that $f^{\prime}(c)=0$.

Write

$$
\begin{aligned}
f^{\prime}(x) & =\frac{((x-6)(x+4))(2(x-1))-(x-1)^{2}((x-6)+(x+4))}{((x-6)(x+4))^{2}} \\
& =\frac{2(x-6)(x+4)(x-1)-(x-1)^{2}(2 x-2)}{(x-6)^{2}(x+4)^{2}} \\
& =\frac{2(x-1)\left[(x-6)(x+4)-(x-1)^{2}\right]}{(x-6)^{2}(x+4)^{2}} \\
& =\frac{2(x-1)\left[\left(x^{2}-2 x-24\right)-\left(x^{2}-2 x+1\right)\right]}{(x-6)^{2}(x+4)^{2}} \\
& =\frac{2(x-1)\left[x^{2}-2 x-24-x^{2}+2 x-1\right]}{(x-6)^{2}(x+4)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2(x-1)[-25]}{(x-6)^{2}(x+4)^{2}} \\
& =\frac{-50(x-1)}{(x-6)^{2}(x+4)^{2}}
\end{aligned}
$$

We see that when $f^{\prime}(x)=0,-50(x-1)=0 \Rightarrow x=1$. Since this value is in $(0,2)$, we conclude

$$
c=1 \text {. }
$$

(f) $|x-4|$ on $[0,2]$

Answer: We go through our checklist:
∇f is continuous on $[0,2]$.
$\checkmark f$ is differentiable on $(0,2)$.
凹 $f(0)=4 \neq 2=f(2)$.
Thus, Rolle's Theorem does not apply.
(g) $\left|x^{2}-4\right|$ on $[-2,2]$

Answer: We note that $\left|x^{2}-4\right|=|(x-2)(x+2)|$ is not differentiable at $x=-2,2$. Further, when $-2 \leq x \leq 2$,

$$
\left|x^{2}-4\right|=-\left(x^{2}-4\right)=4-x^{2}
$$

because $x^{2}-4 \leq 0$ for this choice of x.
We go through our checklist:
$\square f$ is continuous on $[-2,2]$.
$\checkmark f$ is differentiable on $(-2,2)$.
$\square f(-2)=0=f(2)$.
Thus, Rolle's Theorem does apply. We now find all c in $(-2,2)$ such that $f^{\prime}(c)=0$.
Because $f(x)=\left|x^{2}-4\right|=4-x^{2}$ when $-2<x<2$, we can take the derivative as if it were a polynomial. So, $f^{\prime}(x)=-2 x=0$ implies $x=0$. As $x=0$ is in the interval $(-2,2)$, we conclude

$$
c=0 \text {. }
$$

2. Determine whether the Mean Value Theorem (MVT) applies to the given function on the specified interval $[a, b]$. If MVT applies, find all c in the open interval (a, b) which satisfies the conclusion of the theorem. If MVT does not apply, write "MVT does not apply". Provide justification for your conclusions.
(a) $x^{2}+3 x-4$ on $[0,2]$

Answer: We go through our checklist:
$\checkmark f$ is continuous on $[0,2]$
$\square f$ is differentiable on $(0,2)$
Hence, MVT applies and we find c in $(0,2)$ such that

$$
f^{\prime}(c)=\frac{f(2)-f(0)}{2-0}
$$

Write

$$
\begin{aligned}
\frac{f(2)-f(0)}{2-0} & =\frac{\left((2)^{2}+3(2)-4\right)-\left((0)^{2}+3(0)-4\right)}{2} \\
& =\frac{(4+6-4)+4}{2} \\
& =\frac{6+4}{2} \\
& =\frac{10}{2} \\
& =5
\end{aligned}
$$

Then, $f^{\prime}(x)=2 x+3$ implies

$$
\begin{aligned}
f^{\prime}(x) & =5 \\
\Rightarrow \quad 2 x+3 & =5 \\
\Rightarrow \quad 2 x & =2 \\
\Rightarrow \quad x & =1
\end{aligned}
$$

Since $x=1$ is in $(0,2)$, we conclude

$$
c=1 \text {. }
$$

(b) $x^{2}+8 x+12$ on $[-1,1]$

Answer: We go through our checklist:
∇f is continuous on $[-1,1]$
$\square f$ is differentiable on $(-1,1)$
Hence, MVT applies and we find c in $(-1,1)$ such that

$$
f^{\prime}(c)=\frac{f(1)-f(-1)}{1-(-1)}
$$

Write

$$
\begin{aligned}
\frac{f(1)-f(-1)}{1-(-1)} & =\frac{\left((1)^{2}+8(1)+12\right)-\left((-1)^{2}+8(-1)+12\right)}{2} \\
& =\frac{(1+8+12)-(1-8+12)}{2} \\
& =\frac{21-5}{2} \\
& =\frac{16}{2} \\
& =8
\end{aligned}
$$

Then, $f^{\prime}(x)=2 x+8$ implies

$$
\begin{aligned}
f^{\prime}(x) & =8 \\
\Rightarrow \quad 2 x+8 & =8 \\
\Rightarrow \quad 2 x & =0 \\
\Rightarrow \quad x & =0
\end{aligned}
$$

Since $x=0$ is in $(-1,1)$, we conclude

$$
c=0 \text {. }
$$

(c) $-\frac{x^{2}}{x^{2}-4}$ on $[-3,3]$

Answer: We go through our checklist:
$\boxtimes f$ is not continuous on $[-3,3]$ as it is not continuous at $x=-2,2$
$\boxtimes f$ is not differentiable on $(-3,3)$ as it is not differentiable at $x=-2,2$
Hence, MVT does not apply.
(d) $3 x^{2}+2 x-2$ on $[-1,0]$

Answer: We go through our checklist:
$\square f$ is continuous on $[-1,0]$
$\boxtimes f$ is differentiable on $(-1,0)$
Hence, MVT applies and we find c in $(-1,0)$ such that

$$
f^{\prime}(c)=\frac{f(0)-f(-1)}{0-(-1)} .
$$

Write

$$
\begin{aligned}
\frac{f(0)-f(-1)}{0-(-1)} & =\frac{\left(3(0)^{2}+2(0)-2\right)-\left(3(-1)^{2}+2(-1)-2\right)}{1} \\
& =(-2)-(3-2-2) \\
& =-2-(-1) \\
& =-1
\end{aligned}
$$

Then, $f^{\prime}(x)=6 x+2$ implies

$$
\begin{aligned}
f^{\prime}(x) & =-1 \\
\Rightarrow \quad 6 x+2 & =-1 \\
\Rightarrow \quad 6 x & =-3 \\
\Rightarrow \quad x & =-\frac{1}{2}
\end{aligned}
$$

Since $x=-\frac{1}{2}$ is in $(-1,0)$, we conclude

$$
c=-\frac{1}{2} \text {. }
$$

(e) $\left|x^{2}-x-2\right|$ on $[-1,3]$

Answer: We note that

$$
\left|x^{2}-x-2\right|=|(x-2)(x+1)|
$$

is not differentiable at $x=-1,2$.
We go through our checklist:
$\square f$ is continuous on $[-1,3]$
$\downarrow f$ is not differentiable on $(-1,3)$
Hence, MVT does not apply.
(f) $\left|x^{2}-x-12\right|$ on $[-3,4]$

Answer: We note that

$$
\left|x^{2}-x-12\right|=|(x-4)(x+3)|
$$

is not differentiable at $x=-3,4$. Further, when $-3 \leq x \leq 4$,

$$
\left|x^{2}-x-12\right|=-\left(x^{2}-x-12\right)=12+x-x^{2}
$$

because $x^{2}-x-12 \leq 0$ for this choice of x.
We go through our checklist:
$\square f$ is continuous on $[-3,4]$.
$\square f$ is differentiable on $(-3,4)$.
Hence, MVT applies and we find c in $(-3,4)$ such that

$$
f^{\prime}(c)=\frac{f(4)-f(-3)}{4-(-3)} .
$$

Write

$$
\begin{aligned}
\frac{f(4)-f(-3)}{4-(-3)} & =\frac{\left(12+(4)-(4)^{2}\right)-\left(12+(-3)-(-3)^{2}\right)}{7} \\
& =\frac{(12+4-16)-(12-3-9)}{7} \\
& =\frac{(0)-(0)}{7} \\
& =0
\end{aligned}
$$

Then, $f^{\prime}(x)=1-2 x$ implies

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\Rightarrow \quad 1-2 x & =0 \\
\Rightarrow \quad-2 x & =-1 \\
\Rightarrow \quad x & =\frac{1}{2}
\end{aligned}
$$

Since $x=\frac{1}{2}$ is in $(-3,4)$, we conclude

$$
c=\frac{1}{2} \text {. }
$$

(g) $\sqrt{16+x^{2}}$ on $[0,3]$

Answer: We go through our checklist:
∇f is continuous on $[0,3]$.
$\checkmark f$ is differentiable on $(0,3)$.
Hence, MVT applies and we find c in $(0,3)$ such that

$$
f^{\prime}(c)=\frac{f(3)-f(0)}{3-(0)}
$$

Write

$$
\begin{aligned}
\frac{f(3)-f(0)}{3-(0)} & =\frac{\sqrt{16+(3)^{2}}-\sqrt{16+(0)^{2}}}{3} \\
& =\frac{\sqrt{16+9}-\sqrt{16}}{3} \\
& =\frac{\sqrt{25}-\sqrt{16}}{3} \\
& =\frac{5-4}{3} \\
& =\frac{1}{3}
\end{aligned}
$$

Then, $f^{\prime}(x)=\frac{x}{\sqrt{16+x^{2}}}$ implies

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{3} \\
\Rightarrow \quad \frac{x}{\sqrt{16+x^{2}}} & =\frac{1}{3} \\
\Rightarrow \quad x & =\frac{1}{3} \sqrt{16+x^{2}} \\
\Rightarrow \quad x^{2} & =\frac{1}{9}\left(16+x^{2}\right) \\
\Rightarrow \quad 9 x^{2} & =16+x^{2} \\
\Rightarrow \quad 8 x^{2} & =16 \\
\Rightarrow \quad x^{2} & =2 \\
\Rightarrow \quad x & = \pm \sqrt{2}
\end{aligned}
$$

Since $x=\sqrt{2}$ is in $(0,3)$, we conclude

$$
c=\sqrt{2} \text {. }
$$

3. Use the Mean Value Theorem to answer each of the following.
(a) If $f(6)=2$ and $1 \leq f^{\prime}(x)<\infty$ for all x, what is the smallest value of $f(7)$?

Answer: $1 \leq f^{\prime}(x)<\infty$ for all x implies that f is differentiable everywhere. Because differentiability implies continuity, we also see that f is continuous everywhere. Thus, MVT applies to f on $[6,7]$ because f is continuous on $[6,7]$ and differentiable on $(6,7)$.

MVT implies that there exists c in $(6,7)$ such that

$$
f^{\prime}(c)=\frac{f(7)-f(6)}{7-6}=\frac{f(7)-2}{1}=f(7)-2 .
$$

Because $1 \leq f^{\prime}(x)$ for all x, we see that $1 \leq f^{\prime}(c)$ as well (since c is a specific x-value). This means that

$$
1 \leq f^{\prime}(c)=f(7)-2
$$

which implies

$$
\begin{aligned}
& \\
& 1
\end{aligned} \leq f(7)-2 ~ 子 \quad 3 \leq f(7)
$$

We conclude that the smallest value that $f(7)$ can be is 3 .
(b) If $f(2)=-3$ and $-4 \leq f^{\prime}(x)<\infty$ for all x, what is the smallest value of $f(8)$?

Answer: $-4 \leq f^{\prime}(x)<\infty$ for all x implies that f is differentiable everywhere. Because differentiability implies continuity, we also see that f is continuous everywhere. Thus, MVT applies to f on $[2,8]$ because f is continuous on $[2,8]$ and differentiable on $(2,8)$.

MVT implies that there exists c in $(2,8)$ such that

$$
f^{\prime}(c)=\frac{f(8)-f(2)}{8-2}=\frac{f(8)-(-3)}{6}=\frac{f(8)+3}{6}
$$

Because $-4 \leq f^{\prime}(x)$ for all x, we see that $-4 \leq f^{\prime}(c)$ as well (since c is a specific x-value). This means that

$$
-4 \leq f^{\prime}(c)=\frac{f(8)+3}{6}
$$

which implies

$$
\begin{array}{rlrl}
& -4 & \leq \frac{f(8)+3}{6} \\
\Rightarrow & - & -24 & \leq f(8)+3 \\
\Rightarrow & - & -27 & \leq f(8)
\end{array}
$$

We conclude that the smallest value that $f(8)$ can be is -27 .
(c) If $f(-1)=0$ and $-\infty<f^{\prime}(x) \leq 5$ for all x, what is the largest value of $f(0)$?

Answer: $-\infty<f^{\prime}(x) \leq 5$ for all x implies that f is differentiable everywhere. Because differentiability implies continuity, we also see that f is continuous everywhere. Thus, MVT applies to f on $[-1,0]$ because f is continuous on $[-1,0]$ and differentiable on $(-1,0)$.

MVT implies that there exists c in $(-1,0)$ such that

$$
f^{\prime}(c)=\frac{f(0)-f(-1)}{0-(-1)}=\frac{f(0)-0}{1}=f(0) .
$$

Because $5 \geq f^{\prime}(x)$ for all x, we see that $5 \geq f^{\prime}(c)$ as well (since c is a specific x-value). This means that

$$
5 \geq f^{\prime}(c)=f(0)
$$

which implies

$$
5 \geq f(0)
$$

We conclude that the largest value that $f(0)$ can be is 5 .
(d) If $f(3)=5$ and $-\infty<f^{\prime}(x) \leq-4$ for all x, what is the largest value of $f(6)$?

Answer: $-\infty<f^{\prime}(x) \leq-4$ for all x implies that f is differentiable everywhere. Because differentiability implies continuity, we also see that f is continuous everywhere. Thus, MVT applies to f on $[3,6]$ because f is continuous on $[3,6]$ and differentiable on $(3,6)$.

MVT implies that there exists c in $(3,6)$ such that

$$
f^{\prime}(c)=\frac{f(6)-f(3)}{6-3}=\frac{f(6)-5)}{3}=\frac{f(6)-5}{3} .
$$

Because $-4 \geq f^{\prime}(x)$ for all x, we see that $-4 \geq f^{\prime}(c)$ as well (since c is a specific x-value). This means that

$$
-4 \geq f^{\prime}(c)=\frac{f(6)-5}{3}
$$

which implies

$$
\begin{aligned}
-4 & \geq \frac{f(6)-5}{3} \\
\Rightarrow \quad-12 & \geq f(6)-5 \\
\Rightarrow \quad-7 & \geq f(6)
\end{aligned}
$$

We conclude that the largest value that $f(6)$ can be is -7 .

Theorem 1 (Rolle's Theorem). If f is continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b), and if $f(a)=f(b)$, then there is at least one point c in (a, b) for which $f^{\prime}(c)=0$.

Theorem 2 (Mean Value Theorem (MVT)). If f is continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b), then there is at least one point c in (a, b) for which

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

A corollary is a fact which logically follows from a theorem.
Corollary 1. If $f^{\prime}(x)=0$ everywhere on an interval, then $f(x)$ is constant on that interval.

Corollary 2. If $f^{\prime}(x)=g^{\prime}(x)$ everywhere on an interval, then $f(x)=g(x)+$ Constant.

Corollary 3. If $f^{\prime}(x)>0$ everywhere on an interval, then $f(x)$ is increasing on the interval.

If $f^{\prime}(x)<0$ everywhere on an interval, then $f(x)$ is decreasing on the interval.

