In-Class Questions: March 23, 2023

1. Determine whether Rolle's Theorem applies to the given function on the specified interval $[a, b]$. If Rolle's Theorem applies, find all c in the open interval (a, b) which satisfies the conclusion of the theorem. If Rolle's Theorem does not apply, write "Rolle's Theorem does not apply". Provide justification for your conclusions.
(a) $x^{2}-3 x-16$ on $[-2,5]$
(e) $\frac{x^{2}-2 x+1}{x^{2}-2 x-24}$ on $[0,2]$
(b) $2 x^{3}-9 x^{2}$ on $[-2,2]$
(f) $|x-4|$ on $[0,2]$
(c) $3 x^{2}-2 x-1$ on $[-1,1]$
(d) $\frac{x^{2}}{x^{2}-16}$ on $[-5,5]$
(g) $\left|x^{2}-4\right|$ on $[-2,2]$
2. Determine whether the Mean Value Theorem (MVT) applies to the given function on the specified interval $[a, b]$. If MVT applies, find all c in the open interval (a, b) which satisfies the conclusion of the theorem. If MVT does not apply, write "MVT does not apply". Provide justification for your conclusions.
(a) $x^{2}+3 x-4$ on $[0,2]$
(d) $3 x^{2}+2 x-2$ on $[-1,0]$
(b) $x^{2}+8 x+12$ on $[-1,1]$
(e) $\left|x^{2}-x-2\right|$ on $[-1,3]$
(c) $-\frac{x^{2}}{x^{2}-4}$ on $[-3,3]$
(f) $\left|x^{2}-x-12\right|$ on $[-3,4]$
(g) $\sqrt{16+x^{2}}$ on $[0,3]$
3. Use the Mean Value Theorem to answer each of the following.
(a) If $f(6)=2$ and $1 \leq f^{\prime}(x)<\infty$ for all x, what is the smallest value of $f(7)$?
(b) If $f(2)=-3$ and $-4 \leq f^{\prime}(x)<\infty$ for all x, what is the smallest value of $f(8)$?
(c) If $f(-1)=0$ and $-\infty<f^{\prime}(x) \leq 5$ for all x, what is the largest value of $f(0)$?
(d) If $f(3)=5$ and $-\infty<f^{\prime}(x) \leq-4$ for all x, what is the largest value of $f(6)$?

Theorem 1 (Rolle's Theorem). If f is continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b), and if $f(a)=f(b)$, then there is at least one point c in (a, b) for which $f^{\prime}(c)=0$.

Theorem 2 (Mean Value Theorem (MVT)). If f is continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b), then there is at least one point c in (a, b) for which

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

A corollary is a fact which logically follows from a theorem.
Corollary 1. If $f^{\prime}(x)=0$ everywhere on an interval, then $f(x)$ is constant on that interval.

Corollary 2. If $f^{\prime}(x)=g^{\prime}(x)$ everywhere on an interval, then $f(x)=g(x)+$ Constant.

Corollary 3. If $f^{\prime}(x)>0$ everywhere on an interval, then $f(x)$ is increasing on the interval.

If $f^{\prime}(x)<0$ everywhere on an interval, then $f(x)$ is decreasing on the interval.

