In-Class Questions: March 23, 2023

1. Determine whether **Rolle's Theorem** applies to the given function on the specified interval [a, b]. If Rolle's Theorem applies, find all c in the open interval (a, b) which satisfies the conclusion of the theorem. If Rolle's Theorem does not apply, write "Rolle's Theorem does not apply". Provide justification for your conclusions.

(a)
$$x^2 - 3x - 16$$
 on $[-2, 5]$
(b) $2x^3 - 9x^2$ on $[-2, 2]$
(c) $3x^2 - 2x - 1$ on $[-1, 1]$
(d) $\frac{x^2}{x^2 - 16}$ on $[-5, 5]$
(e) $\frac{x^2 - 2x + 1}{x^2 - 2x - 24}$ on $[0, 2]$
(f) $|x - 4|$ on $[0, 2]$
(g) $|x^2 - 4|$ on $[-2, 2]$

- 2. Determine whether the Mean Value Theorem (MVT) applies to the given function on the specified interval [a, b]. If MVT applies, find all c in the open interval (a, b) which satisfies the conclusion of the theorem. If MVT does not apply, write "MVT does not apply". Provide justification for your conclusions.
 - (a) $x^2 + 3x 4$ on [0, 2](b) $x^2 + 8x + 12$ on [-1, 1](c) $-\frac{x^2}{x^2 - 4}$ on [-3, 3](d) $3x^2 + 2x - 2$ on [-1, 0](e) $|x^2 - x - 2|$ on [-1, 3](f) $|x^2 - x - 12|$ on [-3, 4](g) $\sqrt{16 + x^2}$ on [0, 3]

3. Use the Mean Value Theorem to answer each of the following.

- (a) If f(6) = 2 and $1 \le f'(x) < \infty$ for all x, what is the smallest value of f(7)?
- (b) If f(2) = -3 and $-4 \le f'(x) < \infty$ for all x, what is the smallest value of f(8)?
- (c) If f(-1) = 0 and $-\infty < f'(x) \le 5$ for all x, what is the largest value of f(0)?
- (d) If f(3) = 5 and $-\infty < f'(x) \le -4$ for all x, what is the largest value of f(6)?

Theorem 1 (Rolle's Theorem). If f is continuous on the closed interval [a, b] and differentiable on the open interval (a, b), and if f(a) = f(b), then there is at least one point c in (a, b) for which f'(c) = 0.

Theorem 2 (Mean Value Theorem (MVT)). If f is continuous on the closed interval [a, b] and differentiable on the open interval (a, b), then there is at least one point c in (a, b) for which

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

A corollary is a fact which logically follows from a theorem.

Corollary 1. If f'(x) = 0 everywhere on an interval, then f(x) is constant on that interval.

Corollary 2. If f'(x) = g'(x) everywhere on an interval, then f(x) = g(x) + Constant.

Corollary 3. If f'(x) > 0 everywhere on an interval, then f(x) is increasing on the interval.

If f'(x) < 0 everywhere on an interval, then f(x) is decreasing on the interval.