MATH 1420: WORKSHEET FOR SECTION 5.1 RIEMANN SUMS

Consider the function $f(x)=x^{2}+x$ on the interval [0, 4].
(1) Write the left Riemman sum for approximating the area under $f(x)$ over this interval with $N=4$ pieces.
(2) Do the same thing for $N=20$.
(3) Do both of these for the right Riemann sum.
(4) Now that you've written out all these sums, compute the values for the two $N=4$ sums.
(5) Look at the graph of $f(x)$ on this interval. Judging from its shape, are the left Riemann sums an underestimate or an overestimate of the true area? What about the right Riemann sums?
Consider the function $g(x)=2+e^{-x}$ on the interval $[1,3]$.
(1) Write the left Riemman sum for approximating the area under $g(x)$ over this interval with $N=4$ pieces.
(2) Do the same thing for $N=40$.
(3) Do both of these for the right Riemann sum.
(4) Now that you've written out all these sums, compute the values for the two $N=4 \mathrm{sums}$.
(5) Look at the graph of $g(x)$ on this interval. Judging from its shape, are the left Riemann sums an underestimate or an overestimate of the true area? What about the right Riemann sums?

