MATH 210: 10-11 WORKSHEET

If you have an equation which describes a curve, e.g. $x^{2}+y^{2}=1$, then implicit differentiation can give you a formula for the slope of the curve. Namely, you differentiate both sides with respect to x, treating y as a function of x and using the chain rule. For the circle example, you would get $2 x+2 y \cdot \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$, and you can solve $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{x}{y}$.
(1) A circle of radius r is given by the equation $x^{2}+y^{2}=r^{2}$. Use implicit differentiation to get a formula for the slope, and use it to determine the slope at the point $(r / 2, r \sqrt{3} / 2)$. More generally, what is the slope at the point $(r \cos \theta, r \sin \theta)$?
(2) To compare with other methods: Solve for y in terms of x in the equation $x^{2}+y^{2}=$ r^{2} to get two functions which describe the top and bottom halves of the circle. Differentiate these functions to get formulas for the slope at an x-coordinate x. Check that these formulas are equivalent to what you get from implicit differentiation.
(3) An ellipse is like a circle that's been stretched in one direction and is given by the equation

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,
$$

where $a, b>0$. Use implicit differentiation to get a formula for the slope. Check that when $a=b=r$ this gives the same formula for slope as with a circle of radius r.
(4) A hyperbola facing up-down is given by the equation

$$
-\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,
$$

where $a, b>0$. Get a formula for the slope. Determine all intercepts of the hyperbola and the slopes at those intercepts.
(5) Consider the hyperbola $x^{2}-y^{2}=16$. Determine the slope of the the hyperbola at the point $(5,-3)$.
(6) The equation $2 x^{3}+2 y^{3}-9 x y=0$ describes a curve. Determine a formula for the slope of the curve at the point (x, y). Determine the tangent line to the curve at the point $(2,1)$. Use computer tools to graph the curve and line to check your calculation.

