MATH 210: 10-13 WORKSHEET

A function $y=f(x)$ might be hard to differentiate, but the trick of logarithmic differentiation can be used.

- Take \ln of both sides: $\ln y=\ln (f(x))$. This equation describes the same curve because \ln is one-to-one.
- Use rules for logarithms to rewrite the righthand side:

$$
\ln (a b)=\ln a+\ln b, \quad \ln (a / b)=\ln a-\ln b, \quad \ln \left(a^{b}\right)=b \ln a
$$

- Do implicit differentiation on the equation.
- Solve for y^{\prime} in terms of x and y.
- Replace y with $f(x)$ to get $f^{\prime}(x)=y^{\prime}$ as a function of x.
(1) Use logarithmic differentiation to differentiate $a(x)=x^{x}$. Why can you use neither the power rule nor the exponential function rule here?
(2) Differentiate the function $b(t)=t^{2} e^{t} \sin t$ by using the product rule twice.
(3) Now use logarithmic differentiation to find $b^{\prime}(t)$. Which of the two methods was faster?
(4) Use logarithmic differentiation to differentiate $c(u)=\frac{u^{2}+1}{e^{u}}$.
(5) Use logarithmic differentiation to differentiate $d(y)=\left(y^{2}-4\right)^{2 \sin y}$.
(6) Use logarithmic differentiation to derive the power rule: if $f(x)=x^{a}$, where $a \neq 0$ is constant, then $f^{\prime}(x)=a x^{a-1}$.
(7) Differentiate $g(t)=(\tan t)^{\pi}$.

