MATH 210: 10-27 WORKSHEET

The first and second derivative tell you about the shape of a graph:

- $f^{\prime}(x)>0$ means $f(x)$ is increasing, and $f^{\prime}(x)<0$ means $f(x)$ is decreasing;
- $f^{\prime \prime}(x)>0$ means $f(x)$ is concave up, and $f^{\prime \prime}(x)<0$ means $f(x)$ is concave down.
- Local minimums occur where $f^{\prime}(x)$ changes from negative to positive, equivalently at critical points where the graph is concave up.
- Local maximums occur where $f^{\prime}(x)$ changes from positive to negative, equivalently at critical points where the graph is concave down.
- Inflection points are where the concavity changes, equivalently where $f^{\prime \prime}(x)$ goes from negative to positive or vice versa.
Because of these facts, a sign diagram for $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ give you all the information you need to find local maximums/minimums and inflection points.
(1) Use computer tools to graph $a(x)=x^{2} e^{x}$. Look at the graph to visually determine all local maximums and minimums. Try to guess approximately where any inflection points are.
(2) Confirm your work by computing $a^{\prime}(x)$ and $a^{\prime \prime}(x)$, solving when they are 0 , and creating the sign diagrams for the functions. Use the sign diagrams to determine where the local extremums are and inflection points are.
(3) Use computer tools to graph $b(t)=\sin t$. Look at the graph to visually determine where the local extremums and inflection points are. Explain the meaning of these as they relate to the unit circle.
(4) Calculate $b^{\prime}(t)$ and $b^{\prime \prime}(t)$. What equations would you need to solve to find the critical points and inflection points of $b(t)$?
(5) Is it possible for a critical point c to be both a local minimum and an inflection point for a differentiable function $c(x)$? If yes, give an example. If no, explain why.

