MATH 210: 11-10 WORKSHEET

(1) Recall that an even function is one whose graph is symmetric across the y-axis. In symbols, $f(x)$ is even if and only if $f(-x)=f(x)$ for all x. If a function is even then this symmetry can be used to simplify integrals. Graph $\cos x$ and explain why

$$
\int_{-\pi / 2}^{\pi / 2} \cos x \mathrm{~d} x=2 \cdot \int_{0}^{\pi / 2} \cos x \mathrm{~d} x
$$

then compute that integral.
(2) It looks really hard to calculate the integral

$$
\int_{-1}^{1} \sin \left(x^{3}-x\right) \mathrm{d} x .
$$

Use computer tools to graph $\sin \left(x^{3}-x\right)$. What do you notice about the graph? Why does this observation let you conclude that the integral $=0$? Can you generalize this observation?
(3) Use the FTC part II to evaluate

$$
\int_{0}^{3} 4 x-3 x^{2} \mathrm{~d} x
$$

(4) Use the FTC part II to evaluate

$$
\int_{1}^{4} \sqrt{x}-\sqrt[3]{x} \mathrm{~d} x
$$

(5) Evaluate

$$
\int_{1}^{e} \frac{\mathrm{~d} x}{x}
$$

(6) Use the FTC part II to evaluate

$$
\int_{0}^{6} x^{2} \mathrm{~d} x .
$$

Then approximate this integral by computing the left and right Riemman sums with $N=3$ pieces. Which gives a better approximation? Take the average of the two sums. Is this a good approximation? Time permitting, compute the left and right Riemann sums for $N=6$, along with their average, and compare those to the true area given by the FTC part II.

An indefinite integral is like a definite integral but without having the endpoints a and b determined. Because the FTC part II says you compute definite integrals via an antiderivative, the indefinite integral is defined to be the general antiderivative. In symbols:

$$
\int f(x) \mathrm{d} x=F(x)+C
$$

where $F(x)$ is an antiderivative of $f(x)$ and C is an arbitrary constant.
(1) Compute

$$
\int e^{x}-2^{e} e^{x} \mathrm{~d} x
$$

(2) Compute

$$
\int x^{4}-\frac{1}{\sqrt[4]{x}} \mathrm{~d} x
$$

(3) Compute

$$
\int x^{2}-4 x+1 \mathrm{~d} x
$$

(4) Using what you just did, calculate

$$
\int_{0}^{1} x^{2}-4 x+1 \mathrm{~d} x \quad \text { and } \quad \int_{-1}^{3} x^{2}-4 x+1 \mathrm{~d} x .
$$

