MATH 210: 11-27 WORKSHEET

Recall how the net change of a function tells you about values of the function:

$$
f(b)=\underbrace{f(a)}_{\text {init. val. }}+\underbrace{\int_{a}^{b} f^{\prime}(x) \mathrm{d} x}_{\text {net change }}
$$

(1) Suppose the horizontal position of a submarine is given by the function $x(t)=400 t^{2}$, where t is measured in minutes and $x(t)$ is measured in yards.
(a) Determine the initial position (its position at $t=0$) of the submarine.
(b) Determine the position of the submarine at time $t=1$ minutes.
(c) Compute a function for the velocity $v(t)$ of the submarine.
(d) Compute the net change $\int_{0}^{1} v(t) \mathrm{d} t$ of the submarine's position, and compare to what you got in the first two parts. Explain what you see.
(2) You have a lamp with a genie inside, and the genie offers you three wishes. You've been stuck on a calculus problem so you use your wishes to help you calculate $\int_{1}^{4} f(x) \mathrm{d} x$ for some fiendishly complicated function $f(x)$:

- Knowing genies like to twist wishes, your first wish is to avoid this. You wish for the genie to fix a single antiderivative $F(x)$ of $f(x)$ to consider. The genie does so.
- Your second wish is to know $F(1)$. The genie tells you $F(1)=10$.
- Your third wish is to know $F(4)$. The genie, realizing what you want, instead tells you that $\int_{1}^{4} f(x) \mathrm{d} x=90$.
While that is what you wanted to use $F(1)$ and $F(4)$ to figure out, you still feel cheated. How you can you nonetheless determine $F(4)$?
(3) Suppose you know that the area of a certain shape is increasing at a constant (but unknown) rate. You measure that the area at time $t=1$ is 12π and the area at time $t=4$ is 36π. First find the net change of the area of the shape from $t=1$ to $t=4$, then use that to determine the rate at which the area is increasing.

