MATH 210: 11-3 WORKSHEET RIEMANN SUMS

A *Riemann sum* approximates the area of a region under a curve by approximating it with rectangles:

- Divide the region [a, b] into N many pieces, each of length $\Delta x = \frac{b-a}{N}$.
- The endpoints of the subregions are $x_i = a + i \cdot \Delta x$, for *i* integers from 0 to *N*.
- The *i*-th subregion is the interval $[x_{i-1}, x_i]$.
- A recipe for the Riemann sum is:

$$\sum_{i=1}^{N} f(x_i^*) \cdot \Delta x,$$

where x_i^* is a choice of a point from the *i*-th region $[x_{i-1}, x_i]$.

Different choices for x_i^* give different approximations. Here's a few of the infinitely many ways to do this:

- (Left) $x_i^* = x_{i-1}$
- (Right) $x_i^* = x_i$
- (Middle) $x_i^* = \frac{x_{i-1}+x_i}{2}$
- (Max) x_i^* is the input which maximizes f(x) on $[x_{i-1}, x_i]$.
- (Min) x_i^* is the input which minimizes f(x) on $[x_{i-1}, x_i]$.

Once you've chosen N and how you will pick x_i^* you can fill in all your choices into the recipe to get an explicit sum you can compute.

For example, to approximate the area under $f(x) = 9 - x^2$ on [0,3] with N = 3 you get the following sums:

(Left)
$$\sum_{i=1}^{3} f(x_{i-1}) \cdot 1 = \sum_{i=0}^{2} f(x_i) \cdot 1 = \sum_{i=0}^{2} 9 - i^2$$

(Middle)
$$\sum_{i=1}^{3} f\left(\frac{x_{i-1} + x_i}{2}\right) \cdot 1 = \sum_{i=1}^{3} 9 - \left(\frac{2i - 1}{2}\right)^2$$

(Right)
$$\sum_{i=1}^{3} f(x_i) \cdot 1 = \sum_{i=1}^{3} 9 - i^2$$

The textbook writes L_N for the left Riemann sum for N pieces and R_N for the right Riemann sum for N pieces. The other sums aren't given names.

- (1) Consider the function 2^x on the interval [1,5]. Approximate the area under this function by splitting the interval into N = 2 pieces.
 - Write down the left Riemann sum in sigma notation. Evaluate the sum.
 - Write down the right Riemann sum in sigma notation. Evaluate the sum.
 - Write down the middle Riemann sum in sigma notation. Evaluate the sum.
 - Look at a graph of 2^x . Based on the shape of the graph, for each of the Riemann sums explain whether you think it overestimates or underestimates the true area.
 - Two of the Riemann sums you wrote down are also the max Riemann sum and the min Riemann sum. Which are they?
- (2) Consider the function $\sin x$ on the interval $[0, \pi]$.
 - Write down the left and right Riemann sums for N = 10.
 - Write down the left and right Riemann sums for N = 100.
 - Write down the left and right Riemann sums for N = 1000.
 - If you have some programming experience, write a program that computes these sums. What value does it look like they are approaching?
- (3) Consider an arbitrary continuous function f(x).
 - Does the max Riemann sum underestimate or overestimate the true area? Or does it depend?
 - Does the min Riemann sum underestimate or overestimate the true area? Or does it depend?
 - Does the left Riemann sum underestimate or overestimate the true area? Or does it depend? If it depends, is there a condition on f(x) that decides?
 - Does the right Riemann sum underestimate or overestimate the true area? Or does it depend? If it depends, is there a condition on f(x) that decides?