MATH 210: 11-8 WORKSHEET

Theorem (FTC part I). Suppose $f(x)$ is continuous on $[a, b]$. If

$$
F(x)=\int_{a}^{x} f(t) \mathrm{d} t
$$

then $F(x)$ is an antiderivative of $f(x)$. That is, $F^{\prime}(x)=f(x)$.
Theorem (FTC part II). Suppose $f(x)$ is continuous on $[a, b]$ and $F(x)$ is any antiderivative of $f(x)$. Then,

$$
\int_{a}^{b} f(x) \mathrm{d} x=F(b)-F(a) .
$$

(1) Use the FTC part I to find the derivative of

$$
F(x)=\int_{-1000}^{x} e^{-t^{2}} \mathrm{~d} t
$$

(2) Use the FTC part I to find the derivative of

$$
G(x)=\int_{0}^{x^{2}} \sqrt{t} \mathrm{~d} t
$$

[Hint: if $u=x^{2}$ then you can compute $G^{\prime}(u)$ directly. Now use the chain rule.]
(3) It's convenient to talk about integrals where the lower limit is larger than the upper limit. If $a>b$, then define

$$
\int_{a}^{b} f(x) \mathrm{d} x=-\int_{b}^{a} f(x) \mathrm{d} x
$$

Use this definition to find the derivative of

$$
H(x)=\int_{x}^{3} t^{4} \mathrm{~d} t
$$

(4) Find the derivative of

$$
I(x)=\int_{x}^{x^{3}+1} e^{t} \mathrm{~d} t
$$

[Hint: split the integral into two pieces, one from x to 0 and the other from 0 to $\left.x^{3}+1.\right]$
(5) Confirm why the FTC part II is true, knowing part I.

- First, explain why $F(b)-F(a)$ is the same no matter which antiderivative $F(x)$ you look at. [Hint: you need to show that if $F_{0}(x)$ and $F_{1}(x)$ are two different antiderivatives then $F_{0}(b)-F_{0}(a)=F_{1}(b)-F_{1}(a)$. What do you know about how antiderivatives of the same function relate?]
- Next, check that using the antiderivative $F(x)$ given by the FTC part I satisfies the equation in the conclusion of the FTC part II. [Hint: explain why $F(a)=0$.]
- Conclude that any antiderivative $F(x)$ will satisfy the equatoin in the conclusion of the FTC part II.

