MATH 210: 12-1 WORKSHEET

Recall how to use integration by substitution to compute a definite integral:

$$
\int_{a}^{b} f(u(x)) u^{\prime}(x) \mathrm{d} x=\int_{u(a)}^{u(b)} f(u) \mathrm{d} u .
$$

Alternatively, rather than computing new limits of integration for the u-integral, you can keep the limits for x, but translate your antiderivative to the x-domain before plugging in the values.
(1) Calculate $\int_{1}^{4} \frac{e^{\sqrt{x}}}{\sqrt{x}} \mathrm{~d} x$ by translating to the u-domain with new limits in the u-domain.
(2) Calculate $\int_{1}^{4} \frac{e^{\sqrt{x}}}{\sqrt{x}} \mathrm{~d} x$ by keeping the limits of integration in the x-domain. Which method do you prefer?
(3) What is $\int_{0}^{1} x e^{2 x^{2}-1} \mathrm{~d} x$?
(4) Use a computer tool to graph the curve $f(x)=x\left(1-x^{2}\right)^{3}$. Calculate the area of the region bounded by this curve and the x-axis where x goes from 0 to 1 .
(5) What is $\int_{0}^{\pi / 3} \cos x \sin ^{3} x \mathrm{~d} x$?

