MATH 210: 12-4 WORKSHEET MORE PRACTICE WITH SUBSTITUTION

When we learned the chain rule for derivatives, we saw that you could apply it repeatedly for a function given by repeated composition. When you do substitution-the backward version of the chain rule - you only need to do it once.
(1) Differentiate $\tan \left(e^{2 x^{3}+1}\right)$. How many times did you have to apply the chain rule?
(2) Integrate

$$
\int 2 x e^{x^{2}} \cos \left(e^{x^{2}}\right) \mathrm{d} x
$$

by using the substitution $u=e^{x^{2}}$.
(3) Integrate

$$
\int-\frac{e^{\cos (\sqrt{x})} \sin (\sqrt{x})}{2 \sqrt{x}}
$$

Sometimes it's not obvious you can use substitution, and you first have to rewrite an integrand.
(1) Evaluate $\int \tan x \mathrm{~d} x$ by rewriting the integrand as $\frac{\sin x}{\cos x}$.
(2) What is $\int \cot x \mathrm{~d} x$?
(3) Evaluate $\int \sin ^{2} x \cdot \cos ^{3} x \mathrm{~d} x$ by using the Pythagorean identity to rewrite $\cos ^{3} x=$ $\cos ^{2} x \cdot \cos x=\left(1-\sin ^{2} x\right) \cos x$.
(4) What is $\int \sin ^{3} \theta \cdot \cos ^{1000} \theta \mathrm{~d} \theta$?

Here are some more integrals where you need to do a small amount of rewriting to do substitution.
(1) Determine $\int \frac{\mathrm{d} x}{1+x^{2}}$ by looking at the rules for derivatives of inverse trig functions.
(2) Work out a rule for $\int \frac{\mathrm{d} x}{a^{2}+x^{2}}$, where a is a constant, by using the substitution $u=\frac{x}{a}$.
(3) Do a similar process to work out a rule for $\int \frac{\mathrm{d} x}{\sqrt{a^{2}-x^{2}}}$.
(4) Evaluate

$$
\int \frac{2 x+3}{4+x^{2}} \mathrm{~d} x
$$

[Hint: Split it into two fractions.]
(5) What is

$$
\int_{0}^{2} \frac{2 x+3}{4+x^{2}} \mathrm{~d} x ?
$$

