MATH 210: 9-15 WORKSHEET

Use the limit definition of the derivative to demonstrate why the following facts about derivatives are true.
(1) $\frac{\mathrm{d}}{\mathrm{d} x} x^{3}=3 x^{2}$
(2) $\frac{\mathrm{d}}{\mathrm{d} x} \frac{1}{x}=-\frac{1}{x^{2}}$
(3) If $f(x)$ is a function with a derivative and c is a constant, then $\frac{\mathrm{d}}{\mathrm{d} x} c f(x)=c f^{\prime}(x)$.
(4) If $f(x)$ and $g(x)$ are functions with derivatives then $\frac{\mathrm{d}}{\mathrm{d} x}(f(x)+g(x))=f^{\prime}(x)+g^{\prime}(x)$.
(5) If n is a positive integer then $\frac{\mathrm{d}}{\mathrm{d} x} x^{n}=n x^{n-1}$.
[Hint: remember the binomial theorem. ${ }^{1}$]
${ }^{1}$ Namely,

$$
(A+B)^{n}=A^{n}+n A^{n-1} B+\binom{n}{n-2} A^{n-2} B^{2}+\cdots+\binom{n}{2} A^{2} B^{n-2}+n A B^{n-1}+B^{n}
$$

where $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ is the binomial coefficient.

