MATH 210: 9-6 WORKSHEET

(1) Give functions $f(x)$ whose limits $\lim _{x \rightarrow-\infty} f(x)=L$ and $\lim _{x \rightarrow \infty} f(x)=R$ satisfy:

- L and R both infinite
- $L \neq R$ both finite
- $L=R$ both finite
- L finite and R does not exist
- L finite and R infinite
- L infinite and R does not exist
- L infinite and R finite

Try to give these functions both by sketching a graph and by writing down a formula.
(2) Compute the following limits:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{4\left(x^{2}-1\right) x}{3(x+2)^{2}(x-2)} \\
& \lim _{x \rightarrow \infty} \frac{4\left(x^{2}-1\right) x^{2}}{3(x+2)^{2}(x-2)} \\
& \lim _{x \rightarrow \infty} \frac{4\left(x^{2}-1\right) x}{3(x+2)^{2}(x-2)^{2}}
\end{aligned}
$$

(3) Compute the following limits:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{2^{x}}{x^{2}} \\
& \lim _{x \rightarrow-\infty} \frac{2^{x}}{x^{2}} \\
& \lim _{x \rightarrow \infty} \frac{\sqrt{x^{4}-1}}{4 x^{2}-7 x} \\
& \lim _{x \rightarrow-\infty} \frac{\sqrt{x^{4}-1}}{4 x^{2}-7 x}
\end{aligned}
$$

(4) Use the squeeze theorem to compute the limit

$$
\lim _{x \rightarrow 1}(x-1)^{2} \sin x
$$

