## MATH 211: 10-16 WORKSHEET

(1) We already saw that if $\rho(t)=\lambda e^{-\lambda t}, t \geq 0$, then

$$
\int_{0}^{\infty} \rho(t) \mathrm{d} t=1
$$

This probability distribution models wait times for repeating random events, with the parameter $\lambda$ saying how many events happen per time period. For example, if a bus comes three times an hour then $\lambda=3$ gives a model for how long you'll wait for the next bus to arrive.

Compute the integral

$$
\int_{0}^{\infty} t \rho(t) \mathrm{d} t
$$

to confirm that the average wait time is $1 / \lambda$.
(2) We saw that the area between $1 / x, x \geq 1$ and the $x$-axis is infinite. Rotate this curve around the $x$-axis and compute the volume of the resulting solid.
(3) Again think about $1 / x, x \geq 1$ rotated around the $x$-axis. Calculating its surface area directly is hard, since you would have to integrate

$$
\int_{0}^{\infty} \frac{2 \pi}{x} \sqrt{1+\frac{1}{x^{4}}} \mathrm{~d} x
$$

But you can instead compute a lower bound for the integral, and it'll turn out that that is good enough.
(a) First, explain why $\frac{2 \pi}{x} \sqrt{1+\frac{1}{x^{4}}} \geq \frac{2 \pi}{x}$ for all $x \geq 1$. Then explain why that lets you conclude that

$$
\int_{0}^{\infty} \frac{2 \pi}{x} \sqrt{1+\frac{1}{x^{4}}} \mathrm{~d} x \geq \int_{0}^{\infty} \frac{2 \pi}{x} \mathrm{~d} x
$$

(b) Then compute $\int_{0}^{\infty} \frac{2 \pi}{x} \mathrm{~d} x$ to get a lower bound for the surface area.
(c) Compare the surface area of the solid to its volume. Whoa.
(4) Calculate the integral

$$
\int_{0}^{1} \frac{\mathrm{~d} x}{\sqrt{x}}
$$

