MATH 211: 10-18 AND 10-20 WORKSHEET

Here's some useful integrals to remember for partial fraction decomposition:

$$
\begin{aligned}
& \int \frac{\mathrm{d} x}{a x+b}=\frac{1}{a} \ln |a x+b|+C \\
& \int \frac{\mathrm{~d} x}{x^{2}+b^{2}}=\frac{1}{b} \arctan \left(\frac{x}{b}\right)+C
\end{aligned}
$$

(1) Rewrite $\frac{2 x-1}{(x-1)(x+2)}$ as a sum of two simpler fractions.
(2) Use the partial fraction decomposition from the previous problem to compute

$$
\int \frac{2 x-1}{(x-1)(x+2)} \mathrm{d} x .
$$

(3) Use partial fraction decomposition to compute

$$
\int \frac{3 x}{(x-3)(2 x+1)} \mathrm{d} x .
$$

(4) Use partial fraction decomposition to compute

$$
\int \frac{x^{2}+4}{x(x+1)(x-1)} \mathrm{d} x
$$

Here's more integrals using partial fraction decomposition, with the extra complications we discussed.
(1) Rewrite $\frac{x^{2}+1}{(x+3)^{2}}$ as a sum of two simpler fractions.
(2) Use the partial fraction decomposition from the previous problem to compute

$$
\int \frac{x^{2}+1}{(x+3)^{2}} \mathrm{~d} x
$$

(3) Rewrite $\frac{1}{x^{3}+2 x}$ as a sum of two simpler fractions.
(4) Use the partial fraction decomposition from the previous problem to compute

$$
\int \frac{1}{x^{3}+2 x} \mathrm{~d} x .
$$

(5) Rewrite $\frac{3 x^{2}-4}{\left(x^{2}+1\right)^{2}}$ as a sum of two simpler fractions.
(6) Integrate

$$
\int \frac{2 x-1}{x\left(x^{2}+4 x+4\right)} \mathrm{d} x .
$$

(a) Do the partial fraction decomposition to rewrite the fraction as a sum of two simpler fractions.
(b) One of these has denominator x, so is starightforward to handle.
(c) The other has denominator $x^{2}+4 x+4$, and we don't have a rule to directly handle it. Instead, complete the square to rewrite the denominator in the form $(x+h)^{2}+k$.
(d) Then to integrate it you want to use the substitution $u=x+h, \mathrm{~d} u=\mathrm{d} x$ so that the denominator looks like $u^{2}+k$.
(e) Now you can compute the integral like with earlier ones with denominator $x^{2}+b^{2}$.

