MATH 211: 10-27 WORKSHEET

If you think this class is your first time seeing infinite series, it isn't. Writing a number as an infinite sequence of digits is a shorthand for an infinite sum. For example,

$$
\begin{aligned}
\pi & =3.14159265 \ldots \\
& =3+\frac{1}{10}+\frac{4}{10^{2}}+\frac{1}{10^{3}}+\frac{5}{10^{4}}+\frac{9}{10^{5}}+\frac{2}{10^{6}}+\frac{6}{10^{7}}+\frac{5}{10^{8}}+\cdots
\end{aligned}
$$

(1) If the sequence of digits is one digit repeated forever, then this infinite series is a geometric series. Write the numbers $0.333 \ldots$ and $0.999 \ldots$ as geometric series, and use the formula for evaluating a geometric series to write them as fractions.
(2) If the sequence of digits is multiple digits repeated forever, then it's equivalent to a geometric series but you have to combine terms. For example,

$$
0.252525 \ldots=\frac{25}{100}+\frac{25}{100^{2}}+\frac{25}{100^{3}}+\cdots
$$

Write $0.252525 \ldots$ as a fraction.
(3) Show that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges by comparing it to the integral $\int_{1}^{\infty} \frac{1}{x^{2}} \mathrm{~d} x$, which we know converges by a calculation we did when looking at improper fractions. [Hint: Can you represent the infinite sum as the area of a bunch of rectangles so that you can compare that area to the area under the curve $\frac{1}{x^{2}}$?]
(4) Show that $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges to the integral $\int_{1}^{\infty} \frac{1}{x} \mathrm{~d} x$, which we know diverges to ∞. [Hint: again think of the infinite sum as the area of infinitely many rectangles, but now you need to see they have larger area than the area under the curve $\frac{1}{x}$.]

