MATH 211: 10-30 WORKSHEET

Tests for convergence or divergence

- If $\lim _{n \rightarrow \infty} a_{n} \neq 0$ or does not exist then $\sum_{n=0}^{\infty} a_{n}$ diverges.
- (Integral test) Consider a series $\sum_{n=0}^{\infty} a_{n}$ with positive terms. Suppose there is a continuous decreasing function $f(x)$ with $f(n)=a_{n}$ for all $n \geq N$. Then the series converges if and only if the integral $\int_{N}^{\infty} f(x) \mathrm{d} x$ converges.
- The p-series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges if $p>1$ and diverges if $p \leq 1$.
- (Comparison test) Suppose $0 \leq a_{n} \leq b_{n}$ for all but finitely many n. If $\sum_{n=0}^{\infty} b_{n}$ converges then $\sum_{n=0}^{\infty} a_{n}$ converges.
- (Comparison test) Suppose $a_{n} \geq b_{n} \geq 0$ for all but finitely many n. If $\sum_{n=0}^{\infty} b_{n}$ diverges then $\sum_{n=0}^{\infty} a_{n}$ diverges.
- (Limit comparison test) Suppose $a_{n}, b_{n} \geq 0$ for all but finitely many n.
- If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$ exists and is nonzero, then the series $\sum_{n=0}^{\infty} a_{n}$ converges if and only if $\sum_{n=0}^{\infty} b_{n}$ converges.
- If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0$ and $\sum_{n=0}^{\infty} b_{n}$ converges then $\sum_{n=0}^{\infty} a_{n}$ converges.
- If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\infty$ and $\sum_{n=0}^{\infty} b_{n}$ diverges then $\sum_{n=0}^{\infty} a_{n}$ diverges.
(1) Show that $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}$ converges.
(2) Show that $\sum_{n=1}^{\infty} \frac{1}{n-\sqrt{n}}$ diverges.
(3) Does $\sum_{n=0}^{\infty} \frac{1}{n!}$ converge or diverge? Explain why.
[Reminder: $n!=n(n-1) \cdot(n-2) \cdots \cdot 2 \cdot 1$ is the factorial of n.]
(4) As you saw on a previous worksheet, writing a number as an infinite decimal expansion is shorthand for an infinite series. Specifically,

$$
0 . d_{1} d_{2} d_{3} d_{4} \ldots=\sum_{n=1}^{\infty} \frac{d_{n}}{10^{n}}
$$

Confirm that this series always converges no matter what the sequence of digits $\left\{d_{n}\right\}$ is.
(5) Draw a picture that describes the comparison test. Why does this picture explain why the test is valid?
(6) Check the rule for convergence of p-series by using the integral test.

