MATH 211: 10-30 WORKSHEET

TESTS FOR CONVERGENCE OR DIVERGENCE

- If $\lim_{n \to \infty} a_n \neq 0$ or does not exist then $\sum_{n=0}^{\infty} a_n$ diverges.
- (Integral test) Consider a series $\sum_{n=0}^{\infty} a_n$ with positive terms. Suppose there is a continuous decreasing function f(x) with $f(n) = a_n$ for all $n \ge N$. Then the series converges if and only if the integral $\int_N^{\infty} f(x) \, dx$ converges.
- The *p*-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if p > 1 and diverges if $p \le 1$.
- (Comparison test) Suppose $0 \le a_n \le b_n$ for all but finitely many n. If $\sum_{n=0}^{\infty} b_n$ converges ∞

then
$$\sum_{n=0}^{\infty} a_n$$
 converges.

• (Comparison test) Suppose $a_n \ge b_n \ge 0$ for all but finitely many n. If $\sum_{n=0}^{\infty} b_n$ diverges then $\sum_{n=0}^{\infty} a_n$ diverges

then
$$\sum_{n=0}^{\infty} a_n$$
 diverges.

- (Limit comparison test) Suppose $a_n, b_n \ge 0$ for all but finitely many n.
 - If $\lim_{n \to \infty} \frac{a_n}{b_n}$ exists and is nonzero, then the series $\sum_{n=0}^{\infty} a_n$ converges if and only if $\sum_{n=0}^{\infty} b_n$ converges. - If $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$ and $\sum_{n=0}^{\infty} b_n$ converges then $\sum_{n=0}^{\infty} a_n$ converges. - If $\lim_{n \to \infty} \frac{a_n}{b_n} = \infty$ and $\sum_{n=0}^{\infty} b_n$ diverges then $\sum_{n=0}^{\infty} a_n$ diverges.

- (1) Show that $\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$ converges. (2) Show that $\sum_{n=1}^{\infty} \frac{1}{n \sqrt{n}}$ diverges.
- (3) Does $\sum_{n=0}^{\infty} \frac{1}{n!}$ converge or diverge? Explain why.

[Reminder: $n! = n(n-1) \cdot (n-2) \cdot \dots \cdot 2 \cdot 1$ is the factorial of n.]

(4) As you saw on a previous worksheet, writing a number as an infinite decimal expansion is shorthand for an infinite series. Specifically,

$$0.d_1d_2d_3d_4... = \sum_{n=1}^{\infty} \frac{d_n}{10^n}$$

Confirm that this series always converges no matter what the sequence of digits $\{d_n\}$ is.

- (5) Draw a picture that describes the comparison test. Why does this picture explain why the test is valid?
- (6) Check the rule for convergence of *p*-series by using the integral test.