MATH 211: 11-1 WORKSHEET

An alternating series is one in which the terms alternate between positive and negative.

- If a tail of the sequence $\left\{\left|a_{n}\right|\right\}$ monotonically decreases to a limit of 0 , then $\sum_{n=0}^{\infty} a_{n}$ converges.
If a series $\sum_{n=0}^{\infty} a_{n}$ converges but the series $\sum_{n=0}^{\infty}\left|a_{n}\right|$ of absolute value diverges, we say it is conditionally convergent. If the sequence of absolute values converges then it is absolutely convergent.
- If a series is absolutely convergent then it converges.

For these series determine whether they diverge, converge absolutely, or converge conditionally.
(1) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{3 n+1}$
(2) $\sum_{n=1}^{\infty} \frac{\cos n}{n^{2}}$
(3) $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!}$

Consider the series $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$, where x is a fixed real number. Show that this series converges. [In fact, it converges absolutely. But we will need new tools to see why.]

