MATH 211: 11-8 AND 11-10 WORKSHEET

If a function $f(x)$ has a power series (centered at c) with positive radius of convergence, that power series is the Taylor series (centered at c) for $f(x)$:

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!}(x-c)^{n} .
$$

Here are a few important Taylor series. More are on page 585 of the textbook. Unless otherwise stated, the radius of convergence is ∞.

$$
\begin{aligned}
e^{x} & =\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+1+\frac{1}{2}+\frac{1}{6}+\frac{1}{24}+\cdots \\
\sin x & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!} \pm \cdots \\
\cos x & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!} \pm \cdots \\
\frac{1}{1-x} & =\sum_{n=0}^{\infty} x^{n} \quad(\mathrm{RoC}=1) \\
\ln (x) & =\sum_{n=0}^{\infty}(-1)^{n+1} \frac{(x-1)^{n}}{n} \quad(\mathrm{RoC}=1)
\end{aligned}
$$

(1) In lecture we checked the Taylor series at $x=0$ for e^{x}. Check that the Taylor series on the other page for $\sin x$ and $\cos x$ are also correct.
(2) Knowing the Taylor series at $x=0$ for e^{x}, get the series for $e^{3 x}$ and $e^{x^{2}}$. [Hint: substitute $3 x$ or x^{2} into the Taylor series.]
(3) Use a computer tool to graph the first several Taylor polynomials ($=$ the polynomials obtained by looking at a partial sum of a Taylor series) for e^{x}.
(4) Use a computer tool to graph the first several Taylor polynomials for $\sin x$. Explain how you could use a Taylor polynomial for $\sin x$ to approximately calculate $\sin (\pi / 6)$.
(5) Use a computer tool to graph the first several Taylor polynomials for $\cos x$. Explain how you could use a Taylor polynomial for $\sin x$ to approximately calculate $\cos (8 \pi-$ $\pi / 6)$.
These problems give examples of applications of Taylor series, to try to convince you that they are a powerful tool.
(1) (Differential equations) Show that the function $y(x)$ with $y(0)=1$ which makes the equation $y^{\prime}=y$ true is $y(x)=e^{x}$.
(a) Considering a series for $y(x)$:

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

(b) Differentiate it term-by-term to get a series for $y^{\prime}(x)$.
(c) Using that the two series are equal (because $y^{\prime}=y$), figure out the coefficients a_{n}. [Hint: start by figuring out a_{0}, then use it to get a_{1}, then use that to get a_{2}, and so on. You should notice a general pattern.]
(2) (Integration) $e^{-x^{2}}$ is probably the most famous function which doesn't have an easily written antiderivative. But you can use Taylor series to approximate, say, $\int_{0}^{1} e^{-x^{2}} \mathrm{~d} x$.
(a) Use the Taylor series for e^{x} to get a series representing $e^{-x^{2}}$.
(b) Antidifferentiate that series term-by-term to get a series representing $\int e^{-x^{2}} \mathrm{~d} x$. Explicitly compute the coefficients a_{n} out to $n=5$.
(c) Use the degree 5 polynomial approximation to that series to approximate $\int_{0}^{1} e^{-x^{2}} \mathrm{~d} x$. Check your answer is accurate by comparing to what a computer tool gives ${ }^{1}$

[^0]
[^0]: ${ }^{1}$ A topic we skipped over due to time is error estimation. Part of the power of Taylor series is that they give methods for estimating how accurate an approximation a Taylor polynomial is. In a real application, you'd want to use that error estimate to check how accurate your answer is, rather than just compare to a computer tool.

