MATH 211: 12-1 WORKSHEET

Use a computer tool to graph the following curves given by parametric equations. 1
(1) $x(t)=t, y(t)=t^{2}, 0 \leq t \leq 2$.
(2) $x(t)=\cos (3 t), y(t)=\sin (4 t), 0 \leq t \leq 2 \pi$.
(3) $x(t)=\cos (a t), y(t)=\sin (a t), 0 \leq t \leq 2 \pi$ for different values for the constants a and b. What patterns can you observe?
(4) $x(t)=t \cos t, y(t)=t \sin t, 0 \leq t \leq 6 \pi$.
(5) $x(t)=f(t) \cos t, y(t)=f(t) \sin t$, for different choices for the function $f(t)$. What do you observe about the curves you can produce?
The following questions ask you to think about when a parametric curve is the graph of a function. By that I mean a graph of the form $y=f(x)$. (If you want to do graphs $f(y)=x$ that's the same idea but swapping the variables, so let's just fix x to be the independent variable.)
(1) Consider the parametric curve given by $x(t)=t^{3}+1, y(t)=t^{2}-t,-\infty<t<\infty$. Determine an equation for this curve in the form $y=f(x)$.
(2) Suppose a parametric curve is given by $x(t)=t, y(t)=f(t)$ for some function $f(t)$. Must this be the graph of a function? If so, which function?
(3) Suppose a parametric curve is given by $x(t)=t+b, y(t)=f(t)$ for some function $f(t)$ and constant b. Must this be the graph of a function? If so, which function?
(4) Suppose a parametric curve is given by $x(t)=a t+b, y(t)=f(t)$ for some function $f(t)$ and constants a and b. Must this be the graph of a function? If so, which function?
(5) Suppose a parametric curve is given by $x(t)=e^{t}, y(t)=f(t)$ for some function $f(t)$ and constants a and b. Must this be the graph of a function? If so, which function?
(6) Can you come up with a condition which ensures $x(t)=f(t), y(t)=g(t)$ gives the graph of some function? How general a statement can you make? Is your condition a necessary condition? (Meaning that your condition has to be satisfied if the parametric curve is the graph of a function.)

[^0]
[^0]: ${ }^{1}$ If you use desmos.com you can graph a parametric curve by typing in something like ($\cos (t)$, sin(t)). If you use a graphing calculator, it probably has a mode for parametric equations but I can't tell you how to find it.

