MATH 211: 11-1 WORKSHEET

If the parametric equations $x(t), y(t)$ describe the position of a particle in motion then the vector $\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle$ describes the velocity of the particle and its speed is $\sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}}$.

This can be used to get information about a parametrically defined curve:

- Slope at $(x(t), y(t))=\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y^{\prime}(t)}{x^{\prime}(t)}$.
- Arc length from $t=a$ to $t=b=\int_{a}^{b} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} \mathrm{~d} t$.

Here are some exercises for thinking about calculus with parametrically defined curves.
(1) The equations $x(t)=t^{3}-7 t, y(t)=(t+4)^{2}, t \geq 0$, describe the position of a particle moving over time. What is its speed at $t=2$? What is the slope of the curve at $t=2$?
(2) The equations $x(t)=2 t, y(t)=5 t+3,-\infty<t<\infty$ describe a line. What is the slope of the line? Calculate the length of the line segment from $t=0$ to $t=4$ using an integral. Check that this matches the length you get if you use the pythagorean theorem directly.
(3) The equations $x(t)=e^{t}, y=e^{-2 t}$ describe a curve. Calculate the arc length of the curve from $t=0$ to $t=1$.
(4) The equations $x(t)=t$ and $y(t)=t^{3 / 2}, 0 \leq t \leq 4$ describe a curve. What is the length of this curve?
(5) Months ago you learned a formula for the arc length of a curve $y=f(x)$:

$$
\text { arc length }=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} \mathrm{~d} x
$$

You could also describe this curve parametrically with $x(t)=t$ and $y(t)=f(t)$. Check that either way of describing the curve will give you the same formula for arc length.
(6) You can describe a curve in three dimensions with three equations for $x(t), y(t)$, and $z(t)$, which you can think of as the curve traced out by a moving particle. How would you describe the velocity of the particle? How would you describe its speed? How would you calculate the arc length it traces out?

