## MATH 211: 12-6 WORKSHEET

Use a computer graphing tool to graph the following polar functions.
(1) $r(\theta)=\theta, r(\theta)=\theta^{2}$, and $r(\theta)=e^{\theta}$. What shapes do you get? What other polar functions would give a similar shape?
(2) $r(\theta)=K \csc \theta$, where $K$ is a fixed constant. Can you write an equation $y=f(x)$ in rectangular coordinates with the same graph? Explain why this polar function gives that graph.
(3) $r(\theta)=\sin (\theta)$ and $r(\theta)=\cos (\theta)$. Do you know rectangular equations which give the same graphs? Explain why they give the same graphs.
(4) $r(\theta)=A \cos (\theta)+B \sin (\theta)$, where $A$ and $B$ are constants. Can you describe the shape you get in terms of $A$ and $B$ ? Do you know a rectangular equation which gives the same graph? Explain why they give the same graph.
(5) $r(\theta)=\sin (N \theta)$ and $r(\theta)=\cos (N \theta)$ for $N$ a positive integer. What shapes do you get by varying $N$ ? Describe the pattern based upon $N$.
(6) $r(\theta)=\sin (\sqrt{2} \theta)$ and $r(\theta)=\sin (\pi \theta)$. Why do you think you get this pattern?

