MATH 211: 12-8 WORKSHEET

In lecture we saw formulas for area and arc length using polar coordinates.

- The area bounded by the rays $\theta=\alpha$ and $\theta=\beta$ and the curve $r=r(\theta)$ is given by

$$
\int_{\alpha}^{\beta} \frac{1}{2} r(\theta)^{2} \mathrm{~d} \theta
$$

- The arc lenght of the curve $r=r(\theta)$ from $\theta=\alpha$ to $\theta=\beta$ is given by

$$
\int_{\alpha}^{\beta} \sqrt{r(\theta)^{2}+\left[r^{\prime}(\theta)\right]^{2}} \mathrm{~d} \theta
$$

(1) Check that a circle of radius a has area πa^{2} by considering the polar function $r=a$ which describes the circle.
(2) Find the area enclosed by one petal of $r=\cos (3 \theta)$. [If it's not clear what is meant by a petal, graph this polar function.]
(3) Work out a general formula for the area enclosed by one petal of $r=\cos (N \theta)$, where N is a positive integer.
(4) Set up an integral which gives the arc length of one petal of $r=\cos (3 \theta)$.
(5) Find the arc length of the cardioid $r=2+2 \sin \theta$.
(6) Find the arc length of the spiral $r=\theta$ for θ from 0 to 2π.
(7) Find the arc length of the logarithmic spiral $r=e^{\theta}$ for θ from 0 to 2π.

