MATH 211: 12-8 WORKSHEET

In lecture we saw formulas for area and arc length using polar coordinates.

• The area bounded by the rays $\theta = \alpha$ and $\theta = \beta$ and the curve $r = r(\theta)$ is given by

$$\int_{\alpha}^{\beta} \frac{1}{2} r(\theta)^2 \,\mathrm{d}\theta.$$

• The arc lenght of the curve $r = r(\theta)$ from $\theta = \alpha$ to $\theta = \beta$ is given by

$$\int_{\alpha}^{\beta} \sqrt{r(\theta)^2 + [r'(\theta)]^2} \,\mathrm{d}\theta.$$

- (1) Check that a circle of radius a has area πa^2 by considering the polar function r = a which describes the circle.
- (2) Find the area enclosed by one petal of $r = \cos(3\theta)$. [If it's not clear what is meant by a petal, graph this polar function.]
- (3) Work out a general formula for the area enclosed by one petal of $r = \cos(N\theta)$, where N is a positive integer.
- (4) Set up an integral which gives the arc length of one petal of $r = \cos(3\theta)$.
- (5) Find the arc length of the cardioid $r = 2 + 2\sin\theta$.
- (6) Find the arc length of the spiral $r = \theta$ for θ from 0 to 2π .
- (7) Find the arc length of the logarithmic spiral $r = e^{\theta}$ for θ from 0 to 2π .