MATH 211: 9-20 WORKSHEET

Use the definition of $\ln (x)$ and $\exp (x)$ based on integrating for the following.
(1) Show that $\ln (1)=0$.
(2) Show that $a \ln x=\ln \left(x^{a}\right)$ when $x>0$. [Hint: if you can show they have the same derivatives, that means they differ by a constant C. Can you find out what C has to be?]
(3) Show that $\ln (a b)=\ln a+\ln b$, when $a, b>0$. [Hint: break up the integral from 1 to $a b$ to two integrals: from 1 to a and from a to $a b$. What substitution do you need to do on the second integral to move the limits to 1 to b ?]
(4) Use the rules for logs and the fact that $\ln (x)$ and $\exp (x)$ are inverses to show that $\exp (a+b)=\exp (a) \cdot \exp (b)$.

