MATH 211: 9-20 WORKSHEET

Use the definition of $\ln(x)$ and $\exp(x)$ based on integrating for the following.

- (1) Show that $\ln(1) = 0$.
- (2) Show that $a \ln x = \ln(x^a)$ when x > 0. [Hint: if you can show they have the same derivatives, that means they differ by a constant C. Can you find out what C has to be?]
- (3) Show that $\ln(ab) = \ln a + \ln b$, when a, b > 0. [Hint: break up the integral from 1 to ab to two integrals: from 1 to a and from a to ab. What substitution do you need to do on the second integral to move the limits to 1 to b?]
- (4) Use the rules for logs and the fact that $\ln(x)$ and $\exp(x)$ are inverses to show that $\exp(a+b) = \exp(a) \cdot \exp(b)$.