Algebra: 3-6 worksheet

Practice with inverses.
For each of the following functions, calculate its inverse.

- $a(x)=\frac{x}{2}+1$
- $b(x)=2 x^{3}-1$
- $c(x)=-\sqrt[3]{x+1}+2$
- $d(x)=\frac{1}{x}$
- $e(x)=\frac{1}{x^{3}}$
- $f(x)=2-\frac{1}{x+1}$

Yesterday we saw that a function has an inverse if and only if it is one-to-one. If a function is not one-to-one, we can get an almost inverse by restricting the domain. Let's see how this works by looking at the x^{2} function.

1. Sketch a graph of $s(x)=x^{2}$, and use that graph to explain why $s(x)$ is not one-to-one.
2. Restrict the domain of $s(x)$ to $x \geq 0$. Look at the graph on this restricted domain, and explain why the function is one-to-one on this restricted domain.
3. Reflect the graph of $s(x)=x^{2}, x \geq 0$ along the line $y=x$ to get the graph of its inverse.
4. Solve the equation $y=x^{2}$, where $x \geq 0$, for x to get a formula for the inverse.
5. Find the inverse of $r(x)=\sqrt{x}$. What is the domain of $r^{-1}(x)$?
