Algebra: 3-6 worksheet

Practice with inverses.

For each of the following functions, calculate its inverse.

• $a(x) = \frac{x}{2} + 1$

•
$$b(x) = 2x^3 - 1$$

• $c(x) = -\sqrt[3]{x+1} + 2$

•
$$d(x) = \frac{1}{x}$$

• $e(x) = \frac{1}{x^3}$

•
$$f(x) = 2 - \frac{1}{x+1}$$

Yesterday we saw that a function has an inverse if and only if it is one-to-one. If a function is not one-to-one, we can get an almost inverse by restricting the domain. Let's see how this works by looking at the x^2 function.

- 1. Sketch a graph of $s(x) = x^2$, and use that graph to explain why s(x) is not one-to-one.
- 2. Restrict the domain of s(x) to $x \ge 0$. Look at the graph on this restricted domain, and explain why the function is one-to-one on this restricted domain.
- 3. Reflect the graph of $s(x) = x^2$, $x \ge 0$ along the line y = x to get the graph of its inverse.
- 4. Solve the equation $y = x^2$, where $x \ge 0$, for x to get a formula for the inverse.
- 5. Find the inverse of $r(x) = \sqrt{x}$. What is the domain of $r^{-1}(x)$?