MATH 210: HOMEWORK 3 DUE MONDAY 9/16

PROBLEM SET

Monday. Differentiate the following functions.

(1)
$$a(x) = x^{e} + e^{x}$$

(2) $b(x) = \frac{12}{\sqrt[4]{x^{5}}}$
(3) $c(x) = 2 - \sin x$
(4) $d(x) = \pi \cos x + \pi x + \frac{x}{\pi}$
(5) $f(x) = \frac{1}{x^{3}} - e^{2} \cdot e^{x}$

Wednesday. Differentiate the following functions.

(1)
$$a(x) = x^3 e^x$$

(2) $b(x) = \sqrt{x} \sec x$
(3) $c(x) = x \ln x - x$
(4) $d(x) = (\sin x + x)(\sec x - \frac{1}{x})$
Find the following second derivatives.
(5) $a''(x)$
(6) $c''(x)$

Friday. Differentiate the following functions.

(1)
$$a(x) = \tan(\arccos x)$$

(2)
$$b(x) = e^{c}$$

(2) $c(x) = (x^{2} - 1)^{3}$

$$(3) \ c(x) = (x^2 - 1)^3$$

 $(4) \ d(x) = \log_2(\tan x)$

For the following, let k be a constant.

- (5) Differentiate $f_1(x) = e^{kx}$.
- (6) Differentiate $f_2(x) = \sin(kx)$.
- (7) Differentiate $f_3(x)\sqrt{kx}$.
- (8) Build on these ideas to come up with a rule for the derivative of f(kx), where f is an arbitrary differentiable function.

WRITING EXERCISE

Use the definition of the derivative to explain why the sum rule $\frac{d}{dx}(f(x) + g(x)) = f'(x) + g'(x)$ is valid.

Extra credit: Use the definition of the derivative to explain why the power rule $\frac{d}{dx}x^n = nx^{n-1}$, where n is a positive integer, is valid.