MATH 210 RULES FOR HYPERREALS

EXTENDING THE REALS TO THE HYPERREALS

(1) The Extension Principle

- The reals are a subset of the hyperreals, and the order x < y on the reals is a suborder of the order on the hyperreals;
- There is a nonzero infinitesimal;
- Any function f on the reals has a *natural extension* to a function f^* on the hyperreals, with the same number of variables.
- (2) The Transfer Principle. Any real statement about functions f, g, \ldots on the reals holds for their natural extensions f^*, g^*, \ldots on the hyperreals.

Notation: We drop the *s to make it easier to read.

A *real statement* is a combination of equalities, inequalities, or statements about whether a function is defined or undefined.

Examples:

- (Commutativity of addition) x + y = y + x;
- (Rules for <) if 0 < x < y then 0 < 1/y < 1/x;
- (Domains) the cube root function is defined everywhere;
- (No division by 0) x/0 is never defined;
- (Algebraic identities) $x^2 y^2 = (x + y)(x y)$;
- (Trig identities) $\sin^2 x + \cos^2 x = 1$.

Counterexamples:

- There are no nonzero infinitesimals.
- The domain of sin only consists of real numbers;
- Every input to the exponential function is finite.

The algebra of infinitesimal, finite, and infinite numbers

For these, ε and δ (epsilon and delta) are infinitesimal, b and c are finite but non-infinitesimal, and H and K are infinite. And n is a natural number.

(1) Real Numbers

- (a) 0 is the only infinitesimal real number;
- (b) Every real number is finite.

(2) Negatives

- (a) $-\varepsilon$ is infinitesimal;
- (b) -b is finite and non-infinitesimal;
- (c) -H is infinite.

(3) Reciprocals

- (a) $1/\varepsilon$ is infinite (if $\varepsilon \neq 0$);
- (b) 1/b is finite;
- (c) 1/H is infinitesimal.

(4) **Sums**

- (a) $\varepsilon + \delta$ is infinitesimal;
- (b) $b + \varepsilon$ is finite and non-infinitesimal;
- (c) b + c is finite (possibly infinitesimal);
- (d) $H + \varepsilon$ and H + b are infinite.

(5) Products

- (a) $\varepsilon \cdot \delta$ and $\varepsilon \cdot b$ are infinitesimal;
- (b) $b \cdot c$ is finite and non-infinitesimal;
- (c) $b \cdot H$ and $H \cdot K$ are infinite.

(6) Quotients

- (a) ε/b , ε/H , and b/H are infinitesimal;
- (b) b/c is finite and non-infinitesimal;
- (c) b/ε , H/ε , and H/B are infinite.

(7) Powers

- (a) ε^n is infinitesimal;
- (b) b^n is finite and non-infinitesimal;
- (c) H^n is infinite.

(8) Roots

- (a) $\sqrt[n]{\varepsilon}$ is infinitesimal (if ε is positive);
- (b) $\sqrt[n]{b}$ is finite and non-infinitesimal (if b is positive);
- (c) $\sqrt[n]{H}$ is infinite (if H is positive).

(9) Indeterminate forms

(a) ε/δ , H/K, $\varepsilon \cdot H$ and H+K could all be either infinitesimal, finite but non-infinitesimal, or infinite. It depends on the specific values.