MATH 210 RULES FOR LIMITS

LIMIT DEFINITION

The *limit* of f(x) as x approaches c is equal to L,

$$\lim_{x \to c} f(x) = L,$$

if whenever $x \neq c$ is infinitely close to c you have f(x) is infinitely close to L. If this does not happen for a unique L, then we say the limit is undefined or does not exist.

Computing Limits

To compute $\lim_{x\to c} f(x)$:

- (1) Let $x \neq c$ be infinitely close to c.
- (2) Simplify f(x), if necessary.
- (3) Compute the standard part st(f(x)).

One-sided limits

- Left limit: $\lim_{x\to c^-} f(x) = L$ if whenever x < c is infinitely close to c you have $f(x) \approx L$.
- Right limit: $\lim_{x\to c^+} f(x) = L$ if whenever x > c is infinitely close to c you have $f(x) \approx L$.
- Fact: $\lim_{x\to c} f(x) = L$ if and only if $\lim_{x\to c^-} f(x) = \lim_{x\to c^+} f(x) = L$.

Rules for limits

Because limits are certain standard parts, the rules for standard parts immediately give rules for limits. Here, assume that $\lim_{x\to c} f(x)$ and $\lim_{x\to c} g(x)$ are both defined. The analogous rules hold for one-sided limits.

• Constant multiple rule. Let k be a real number.

$$\lim_{x \to c} k \cdot f(x) = k \cdot \lim_{x \to c} f(x)$$

• Sum rule.

$$\lim_{x \to c} f(x) + g(x) = \lim_{x \to c} f(x) + \lim_{x \to c} g(x)$$

• Difference rule.

$$\lim_{x \to c} f(x) - g(x) = \lim_{x \to c} f(x) - \lim_{x \to c} g(x)$$

• Multiplication rule.

$$\lim_{x \to c} f(x) \cdot g(x) = \left(\lim_{x \to c} f(x)\right) \cdot \left(\lim_{x \to c} g(x)\right)$$

• Division rule. Assume $\lim_{x\to c} g(x) \neq 0$.

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}$$

• Power rule. Let k be a real number

$$\lim_{x \to c} f(x)^k = \left(\lim_{x \to c} f(x)\right)^k$$

• Root rule. Let n be a positive integer.

$$\lim_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to c} f(x)}$$

1

PRACTICE PROBLEMS

Compute the following limits, or say why the limit does not exist.

(1)
$$\lim_{x \to 3} x^3 - 3x$$

(2)
$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2}$$

(3)
$$\lim_{x\to 0} \frac{3+2/x}{1-3/x}$$

(4)
$$\lim_{x \to 16} \frac{\sqrt{x} - 4}{x - 16}$$

$$(5) \lim_{x \to 0} \frac{|x|}{x}$$

$$(6) \lim_{x \to 0^+} \frac{|x|}{x}$$

$$(7) \lim_{x \to -3} 5\sqrt{x+3}$$

(8)
$$\lim_{x \to -3^+} 5\sqrt{x+3}$$

$$(9) \lim_{x \to a} \sqrt{|a - x|}$$

Compute the following limits. [Hint: If you recognize that they are instances of the definition of the derivative, you can use rules for differentiating!]

(1)
$$\lim_{\Delta x \to 0} \frac{(x + \Delta x)^2 - x^2}{\Delta x}$$

(2)
$$\lim_{\Delta x \to 0} \frac{\frac{1}{x + \Delta x} - \frac{1}{x}}{\Delta x}$$

(1)
$$\lim_{\Delta x \to 0} \frac{(x + \Delta x)^2 - x^2}{\Delta x}$$
(2)
$$\lim_{\Delta x \to 0} \frac{\frac{1}{x + \Delta x} - \frac{1}{x}}{\Delta x}$$
(3)
$$\lim_{\Delta x \to 0} \frac{3\sqrt{x + \Delta x + 1} - 3\sqrt{x + 1}}{\Delta x}$$
(4)
$$\lim_{\Delta x \to 0} \frac{e^{x + \Delta x} - e^x}{\Delta x}$$

(4)
$$\lim_{\Delta x \to 0} \frac{e^{x+\Delta x} - e^x}{\Delta x}$$