MATH 210: 9-18 WORKSHEET

A function y = f(x) might be hard to differentiate, but the trick of logarithmic differen*tiation* can be used.

- Take ln of both sides: $\ln y = \ln(f(x))$. This equation describes the same curve because ln is one-to-one.
- Use rules for logarithms to rewrite the righthand side:

 $\ln(a^b) = b \ln a.$ $\ln(a/b) = \ln a - \ln b,$ $\ln(ab) = \ln a + \ln b,$

- Do implicit differentiation on the equation.
- Solve for y' in terms of x and y.
- Replace y with f(x) to get f'(x) = y' as a function of x.
- (1) Use logarithmic differentiation to differentiate $a(x) = x^{1/x}$. Why can you use neither the power rule nor the exponential function rule here?
- (2) Differentiate the function $b(t) = t^2 e^t \sin t$ by using the product rule twice.
- (3) Now use logarithmic differentiation to find b'(t). Which of the two methods was faster?
- (4) Use logarithmic differentiation to differentiate c(u) = ^{u²+1}/_{e^u}.
 (5) Use logarithmic differentiation to differentiate d(y) = (y² 4)^{2 sin y}.
- (6) Use logarithmic differentiation to derive the power rule: if $f(x) = x^a$, where $a \neq 0$ is constant, then $f'(x) = ax^{a-1}$.
- (7) Use logarithmic differentiation to derive the quotient rule: if $f(x) = \frac{n(x)}{d(x)}$ then f'(x) =n'(x) d(x) - n(x) d'(x) $(d(x))^2$
- (8) Differentiate $g(z) = z^4 e^{2z} \cos z \sin z + 2z$.